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Abstract. We study the higher-order Euler polynomials and give the cor-
responding monic orthogonal polynomials, which are Meixner-Pollaczek poly-
nomials with certain arguments and constant factors. Moreover, we obtain a
connection to the generalized Motzkin number, which leads to a new recurrence
formula and a matrix representation for the higher-order Euler polynomials.

1. Introduction

The Bernoulli numbers Bn and Euler numbers En, defined by

(1.1)
z

ez − 1
=

∞∑
n=0

Bn
zn

n!
and

2

ez + e−z
=

∞∑
n=0

En
zn

n!
,

belong to the most important numbers, with various applications in number theory
and also other fields of mathematics. These sequences of numbers satisfy numerous
properties, including connections with certain matrices and determinants. See, e.g,
[4]. A new such connection is as follows. Define the doubly infinite band matrix

E :=



0 −1 0 0 · · · 0 · · ·
1 0 −4 0 · · · 0 · · ·

0 1 0
. . . . . .

... · · ·

0 0 1
. . . −m2 0 · · ·

...
...

...
. . . 0 −(m+ 1)2 · · ·

0 0 0
. . . 1

. . . . . .
...

...
... · · ·

...
. . . . . .


.

If for each n ≥ 1, we take the n-th power of the upper left n × n submatrix of E,
then the upper left entry of this power will be En. In this way, we can easily obtain
E1 = 0, E2 = −1, E3 = 0, and E4 = 5, which are consistent with the values that
can be obtained from the generating function (1.1).

It is one of the objectives of this paper to explain this phenomenon. In fact, we
will generalize it in two directions: one for Euler polynomials of higher order, which
contains the ordinary Euler polynomials En(x) and Euler numbers En as special
cases; and the other for Bernoulli polynomials Bn(x) and Bernoulli numbers Bn.
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In this process, we encounter the generalized Motzkin numbers, special orthogonal
polynomials, and some probabilistic methods that can be applied in number theory.

The Euler polynomials of order p, denoted by E(p)
n (x), are defined by

(1.2)
(

2

ez + 1

)p
exz =

∞∑
n=0

E(p)
n (x)

zn

n!
,

with special values E(1)
n (x) = En(x) and E(1)

n (1/2) = En(1/2) = En/2
n. (See, e.g.,

[13, Entries 24.16.3 and 24.2.9].) The first several terms of E(p)
n (x) are as follows.

p = 1 p = 2 p = 3
n = 0 1 1 1
n = 1 x− 1

2 x− 1 x− 3
2

n = 2 x2 − x x2 − 2x+ 1
2 x2 − 3x+ 3

2
n = 3 x3 − 3

2x
2 + 1

4 x3 − 3x2 + 3
2x+ 1

2 x3 − 9
2x

2 + 9
2x

n = 4 x4 − 2x3 + x x4 − 4x3 + 3x2 + 2x− 1 x4 − 6x3 + 9x2 − 3

Table 1. E(p)
n (x) for 0 ≤ n ≤ 4 and 1 ≤ p ≤ 3

Our first result here is to give the monic orthogonal polynomials with respect to
E

(p)
n (x). Given a sequence mn, we study the monic orthogonal polynomials Pn(y)

with respect to mn. The orthogonality means, for integers r and n with 0 ≤ r < n,

(1.3) yrPn(y)|yk=mk = 0,

where the left-hand side means expanding the polynomial and evaluating as yk =
mk on each power of y. In addition, Pn satisfies a three-term recurrence [14, p. 47]:
for certain sequences sn and tn, P0(y) = 1, P1(y) = y − s0, and when n ≥ 1,

(1.4) Pn+1(y) = (y − sn)Pn(y)− tnPn−1(y).

After Touchard [16, eq. 44] computed the monic orthogonal polynomials with
respect to theBn, Carlitz [3, eq. 4.7] and also with Al-Salam [1, p. 93] gave the monic
orthogonal polynomials, denoted byQn(y), with respect to En. More precisely, they
obtained Q0(y) = 1, Q1(y) = y and for n ≥ 1,

(1.5) Qn+1(y) = yQn(y) + n2Qn−1(y).

Now, let Ω
(p)
n (y) be the monic orthogonal polynomials with respect to E(p)

n (x), i.e.,
similarly as (1.3), for integers r and n, with 0 ≤ r < n,

(1.6) yrΩ(p)
n (y)|

yk=E
(p)
k (x)

= 0.

Our first result is to give the recurrence of Ω
(p)
n (y).

Theorem 1. For integer p ≥ 1, we have Ω
(p)
0 (y) = 1, Ω

(p)
1 (y) = y − x+ p/2 and

(1.7) Ω
(p)
n+1(y) =

(
y − x+

p

2

)
Ω(p)
n (y) +

n(n+ p− 1)

4
Ω

(p)
n−1(y).

See Example 10 to illustrate the orthogonality (1.6) for p = n = 2. Furthermore,
Theorem 1 links E(p)

n (x) to the generalized Motzkin numbers, defined next.

Definition 2. Given arbitrary sequences σk and τk, the generalized Motzkin num-
bers Mn,k are defined by M0,0 = 1 and for n > 0 by the recurrence

(1.8) Mn+1,k = Mn,k−1 + σkMn,k + τk+1Mn,k+1,

where Mn,k = 0 if k > n or k < 0. (See also [12, eq. 3].)



ORTHOGONAL POLYNOMIALS AND GENERALIZED MOTZKIN NUMBERS 3

The second result identifies E(p)
n (x) as the generalized Motzkin numbers, which

allows us to endow new recurrence, as (1.8), and matrix representation, for E(p)
n (x).

Theorem 3. Let E
(p)
n,k be the generalized Motzkin numbers with special choices

σk = x− p/2 and τk = −k (k + p− 1) /4. Then, E(p)
n,0 = E

(p)
n (x).

To prove both Theorem 1 and Theorem 3, we shall organize this paper as follows.
In Section 2, we first review some basic definitions and properties on random vari-

ables, orthogonal polynomials, and also the probabilistic interpretation for E(p)
n (x),

viewing them as moments of a certain random variable. Next, instead of proving the
recurrence (1.7), we identify Ω

(p)
n (y) as the Meixner-Pollaczek polynomials, whose

definition and important properties will also be introduced in this section.
In Section 3, after introducing a combinatorial interpretation of the generalized

Motzkin numbers, we present two continued fractions expressions. This leads to a
general theorem, Theorem 13, identifying moments of a random variable and the
generalized Motzkin numbers. Then, we see that Theorem 3 is just a special case
on E

(p)
n (x). Moreover, the combinatorial interpretation as weighted lattice paths

provides a matrix representation for E(p)
n (x). In the end, an example presents a

connection between the Euler numbers and Catalan numbers.
In the last section, Section 4, we give analogues for Bernoulli polynomials and a

conjecture for the higher-order Bernoulli polynomials.

2. Orthogonal polynomials for higher-order Euler polynomials

2.1. Preliminaries. We first recall some necessary definitions and classical results
on random variables.

Given an arbitrary random variable X on R, with probability density function
p(t) and moments mn, namely, mn = E[Xn] =

∫
R t

np(t)dt, one can consider the
monic orthogonal polynomials with respect to X, denoted by Pn(y), which are
monic polynomials with degree degPn = n. For positive integers u and v,

E [Pu(X)Pv(X)] =

∫
R
Pu(t)Pv(t)p(t)dt = cuδu,v

(see [14, eq. 2.20]), where cu are constants depending on u and δu,v is the Kronecker
delta function, which gives 1 if u = v, and 0 if u 6= v. Equivalently, the orthogonality
can be expressed as a system of equations: for integers r and n with 0 ≤ r < n,

E [XrPn(X)] =

∫
R
trPn(t)dt = yrPn(y)|yk=mk = 0,

which is the same as (1.3). The three-term recurrence of Pn(y) is stated in (1.4),
with P0(y) = 1 and P1(y) = y − s0.

If X ′ is another random variable independent of X with moments m′n, then for
the random variable X +X ′ we have

(2.1) E
[
(X +X ′)

n]
=

n∑
k=0

(
n

k

)
mkm

′
n−k = (y1 + y2)

n |yk1 =mk,yk2 =m′k
.

The next lemma gives the moments and the monic orthogonal polynomials after
shifting or scaling X, which is crucial in the proof of Theorem 1.
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Lemma 4. Let C and c be constants.
1. For the shifted random variable X + c, the corresponding moments are

E [(X + c)
n
] =

n∑
k=0

(
n

k

)
mkc

n−k

and the monic orthogonal polynomials, denoted by P̄n(y), satisfy P̄0(y) = 1, P̄1(y) =
y − s0 − c and for n ≥ 1,

(2.2) P̄n+1(y) = (y − sn − c)P̄n(y)− tnP̄n−1(y).

2. For the scaled random variable CX, the moments are E [(CX)
n
] = Cnmn,

and the monic orthogonal polynomials, denoted by P̃n(y), satisfy P̃0(y) = 1, P̃1(y) =
y − Cs0 and for n ≥ 1,

(2.3) P̃n+1(y) = (y − Csn)P̃n(y)− C2tnP̃n−1(y).

Proof. Computations for the moments are straightforward. We only consider the
monic orthogonal polynomials.

1. For X + c, notice that P̄n(y) := Pn(y − c) satisfies

E
[
P̄u(X + c)P̄v(X + c)

]
= E

[
P̄u(X)P̄v(X)

]
= cuδu,v.

The recurrence (2.2) follows by shifting y 7→ y − c in (1.4).
2. Similarly, for CX, P̃n(y) := CnPn(y/C). �

Next, we recall the probabilistic interpretation for E(p)
n (x). See, e.g., [9, eq. 2.6].

Let LE be a random variable with density function pE(t) := sech(πt) on R. Also
consider a sequence of independent and identically distributed (i. i. d. ) random
variables (LEi)

p
i=1 with each LEi having the same distribution as LE . Then E

(p)
n (x)

is the n-th moment of a certain random variable:

E(p)
n (x) = E

[(
x+

p∑
i=1

iLEi −
p

2

)n]
.

For simplicity, we denote εi = iLEi and ε(p) :=
∑p
i=1 εi. Then (εi)

p
i=1 is also an

i. i. d. sequence. Moreover,

(2.4) E(p)
n (x) = E

[(
x+ ε(p) − p

2

)n]
.

The higher-order Euler numbers are usually defined as E(p)
n := E

(p)
n (0), for p > 1.

We next define another sequence of numbers, related to E(p)
n (x) and E(p)

n , as follows.

Definition 5. Define the sequence Ē(p)
n by the exponential generating function(

2

ez + e−z

)p
=

∞∑
n=0

Ē(p)
n

zn

n!
.

From (1.2) and (2.4), we see that

(2.5) Ē(p)
n = 2nE(p)

n

(p
2

)
, Ē(1)

n = En, and Ē(p)
n = E

[(
2ε(p)

)n]
.

As stated in Section 1, the orthogonal polynomials with respect to En, denoted
by Qn(y) satisfy the recurrence (1.5). In fact, the next definition shows that Qn(y)
are basically the Meixner-Pollaczek polynomials; see, e.g., [10, eq. 9.7.1].
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Definition 6. The Meixner-Pollaczek polynomials are defined by

P (λ)
n (y;φ) :=

(2λ)n
n!

einφ 2F1

(
−n, λ+ iy

2λ

∣∣∣∣1− e−2iφ

)
,

where (x)n := x(x+ 1)(x+ 2) · · · (x+n− 1) is the Pochhammer symbol and 2F1 is
the hypergeometric function [13, Entries 15.1.1 and 15.2.1].

Following a similar computation as that in, e.g., [7, p. 1], we see

(2.6) Qn(y) := inn!P
( 1

2 )
n

(
−iy

2
;
π

2

)
.

Two important properties of P (λ)
n (y;φ) are listed in the following proposition.

Proposition 7. The Meixner-Pollaczek polynomials P (λ)
n (y;φ) satisfy the recur-

rence

(2.7) (n+1)P
(λ)
n+1(y;φ) = 2(y sinφ+(n+λ) cosφ)P (λ)

n (y;φ)−(n+2λ−1)P
(λ)
n−1(y;φ);

and the convolution formula

(2.8) P (λ+µ)
n (y1 + y2, φ) =

n∑
k=0

P
(λ)
k (y1, φ)P

(µ)
n−k (y2, φ) .

For proofs and further details of the proposition above, see [10, eq. 9.7.3] and [2,
p. 17], respectively.

2.2. Proof of Theorem 1. The following theorem gives an explicit expression of
Ω

(p)
n (y), which implies Theorem 1, by (2.7).

Theorem 8. For positive integers n and p, we have

Ω(p)
n (y) =

inn!

2n
P

( p2 )
n

(
−i
(
y − x+

p

2

)
;
π

2

)
.

To prove this result, we need the following lemma.

Lemma 9. Let Q(p)
n (y) be the monic orthogonal polynomials with respect to Ē(p)

n .
Then,

(2.9) Q(p)
n (y) = inn!P

( p2 )
n

(
− iy

2
;
π

2

)
.

Proof. We shall prove this by induction on the order p. Obviously, (2.9) coincides
with (2.6) when p = 1. If p > 1, we write p = p1 + p2, with both p1, p2 ≥
1. By inductive hypothesis, Q(pi)

n (y), defined by (2.9), are the monic orthogonal
polynomials with respect to Ē(pi)

n , for i = 1, 2. Now, we write y = y1 + y2, so that
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by (2.8),
n∑
k=0

(
n

k

)
Q

(p1)
k (y1)Q

(p2)
n−k(y2)

=

n∑
k=0

(
n

k

)[
ikk!P

( p12 )
k

(
− iy1

2
;
π

2

)][
in−k(n− k)!P

( p22 )
n−k

(
− iy2

2
;
π

2

)]

=inn!

n∑
k=0

P
( p12 )
k

(
− iy1

2
;
π

2

)
P

( p22 )
n−k

(
− iy2

2
;
π

2

)
=inn!P

( p2 )
n

(
− iy

2
;
π

2

)
= Q(p)

n (y).

To show the orthogonality, we consider integers r and n with 0 ≤ r < n. Then

yrQ(p)
n (y) = (y1 + y2)

r
n∑
k=0

(
n

k

)
Q

(p1)
k (y1)Q

(p2)
n−k(y2)

=

(
n∑
l=0

(
n

l

)
yl1y

r−l
2

)(
n∑
k=0

(
n

k

)
Q

(p1)
k (y1)Q

(p2)
n−k(y2)

)

=

n∑
l=0

n∑
k=0

(
n

l

)(
n

k

)(
yl1Q

(p1)
k (y1)

)(
yr−l2 Q

(p2)
n−k(y2)

)
.

From (2.1) and the fact that Ē(p)
n = E

[(
2ε(p)

)n]
= E

[(
2ε(p1) + 2ε(p2)

)n]
, we have

yrQ(p)
n (y)|

ys=Ē
(p)
s

= (y1 + y2)
r
Q(p)
n (y1 + y2)|

ys1=Ē
(p1)
s ,ys2=Ē

(p2)
s

=

n∑
l=0

n∑
k=0

(
n

l

)(
n

k

)(
yl1Q

(p1)
k (y1)

) ∣∣∣∣
ys1=Ē

(p1)
s

(
yr−l2 Q

(p2)
n−k(y2)

) ∣∣∣∣
ys2=Ē

(p2)
s

.

Since l+ (r− l) = r < n = k+ (n− k) for each term in the sum above, either l < k

or r − l < n− k holds, implying the orthogonality: yrQ(p)
n (y)|

ys=Ē
(p)
s

= 0. �

Proof of Theorem 8. From (2.4) and (2.5), we see

E(p)
n (x) = E

[(
x+ ε(p) − p

2

)n]
= E

[(
x− p

2
+

1

2
·
(

2ε(p)
))n]

,

where, as shown above, Ē(p)
n = E

[(
2ε(p)

)n]
. Then, we apply Lemma 4 twice, for

C = 1/2 and c = x− p/2, to obtain

Ω(p)
n (y) =

1

2n
Q(p)
n

(
2
(
y − x+

p

2

))
=
inn!

2n
P

( p2 )
n

(
−i
(
y − x+

p

2

)
;
π

2

)
,

which completes the proof. �

To conclude this section, we present an example to illustrate the orthogonality
relation (1.6).

Example 10. When p = 2, we see by (1.7)

Ω
(2)
2 (y) =

(
y − x+

2

2

)2

+
1(1 + 2− 1)

4
= y2 − 2 (x− 1) y + (x− 1)

2
+

1

2
.
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Using Table 1, we have

y0Ω
(2)
2 (y)|

yk=E
(2)
k (x)

= y2 − 2 (x− 1) y + (x− 1)
2

+
1

2
|
yk=E

(2)
k (x)

= x2 − 2x+
1

2
− 2 (x− 1)

2
+ (x− 1)

2
+

1

2
= 0,

and similarly

yΩ
(2)
2 (y)|

yk=E
(2)
k (x)

=y3 − 2 (x− 1) y2 + (x− 1)
2
y +

y

2
|
yk=E

(2)
k (x)

=x3 − 3x2 +
3

2
x+

1

2
− 2 (x− 1)

(
x2 − 2x+

1

2

)
+ (x− 1)

3
+
x− 1

2
= 0.

This confirms (1.6) for p = n = 2.

3. Connection to generalized Motzkin numbers

3.1. Preliminaries. Recall the definition of the generalized Motzkin numbers in
Definition 2. In fact, Mn,k counts the number of certain weighted lattice paths,
called Motzkin paths [6, p. 319]. More specifically, consider the paths with the
following restrictions:

1. all paths lie within the first quadrant;
2. only allow three types of paths:

a) horizontal path αk from (j, k) to (j + 1, k);
b) diagonally up path βk from (j, k) to (j + 1, k + 1);
c) and diagonally down path γk from (j, k) to (j + 1, k − 1);

3. associate each type of the paths to different weights as αk 7→ 1, βk 7→ σk, and
γk 7→ τk, which we shall denote by the weight triple (1, σk, τk).

Then, Mn,k counts the number of (1, σk, τk)-weighted paths from (0, 0) to (n, k).
The next result shows that when k = 0, the generating function of Mn,0 admits

a form of continued fractions (called J(acobi)-fractions). See, e.g., [6, p. 324].

Theorem 11. For the generalized Motzkin numbers Mn,k defined by (1.8), we have

(3.1)
∞∑
n=0

Mn,0z
n =

1

1− σ0z − τ1z2

1−σ1z− τ2z
2

1−σ2z−···

.

A similar expression is known for moments. See, e.g., [11, pp. 20–21].

Theorem 12. Let X be an arbitrary random variable, with moments mn and
monic orthogonal polynomials Pn(y) satisfying the recurrence (1.4), involving two
sequences sn and tn. Then, we have

(3.2)
∞∑
n=0

mnz
n =

m0

1− s0z − t1z2

1−s1z− t2z
2

1−s2z−···

.

Combining (3.2) and (3.1) leads to the following general theorem.

Theorem 13. Let the two sequences sn and tn be the ones appearing in the recur-
rence (1.4), for some random variable X, and assume that m0 = 1. Also define the
generalized Motzkin number sequence Mn,k by letting σk = sk and τk = tk in (1.8).
Then, Mn,0 gives the moments of X, i.e., Mn,0 = mn = E[Xn].
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Remark. The condition m0 = 1 in Theorem 13 is usually guaranteed by normaliza-
tion of the density function.

3.2. Proof and Applications of Theorem 3.

Proof of Theorem 3. We apply Theorem 13 to the random variable x+ ε(p) − p/2,
whose moments are E(p)

n (x), we directly prove Theorem 3. �

The combinatorial interpretation for E(p)
n (x) can now be used to to obtain the

following matrix representation.

Theorem 14. Define the infinite dimensional matrix

RE(p) :=



x− p
2 −p4 0 0 · · · 0 · · ·

1 x− p
2 −p+1

2 0 · · · 0 · · ·

0 1 x− p
2

. . . . . .
... · · ·

0 0 1
. . . −n(n+p−1)

4 0 · · ·
...

...
...

. . . x− p
2 − (n+1)(n+p)

4 · · ·

0 0 0
. . . 1

. . . . . .
...

...
... · · ·

...
. . . . . .


,

and let RE(p)
m be the left upper m ×m block of RE(p). Then for any nonnegative

integer n ≤ m, the left upper entry of
(
RE

(p)
m

)n
gives E(p)

n (x), i.e.,[(
RE(p)

m

)n]
1,1

= E(p)
n (x).

Example 15. The case for p = 1 and x = 1/2 is shown in the Introduction. Now,
let p = 2 and m = 4. Then

RE
(2)
4 :=


x− 1 −1/2 0 0

1 x− 1 −3/2 0
0 1 x− 1 −3
0 0 1 x− 1


and (

RE
(2)
4

)3

=


x3 − 3x2 + 3

2x+ 1
2 ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 ,

confirming E(2)
3 (x) = x3 − 3x2 + 3x/2 + 1/2. (See Table 1.)

Example 16. Recall En = 2nE
(1)
n (1/2). By Lemma 4, we see the Euler numbers

En are given by the weighted lattice paths (1, 0,−k2), which means that the hori-
zontal paths are eliminated. Therefore, En counts the weighted Dyck paths, related
to Catalan numbers Cn [15, Ex. 25]. For example, when n = 6, there are

C3 :=
1

4

(
6

3

)
= 5

weighted Dyck paths, listed as follows:
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Then, by noting that each diagonally down path from (j, k) to (j + 1, k − 1) has
weight −k2, we have

−61 = E6 = (−1)
3 (

322212 + 222212 + 122212 + 221212 + 121212
)
.

Remark. This reconfirms that Euler numbers are integers, odd index terms vanish,
and even terms have alternating signs. (See also [13, Entries 24.2.7 and 24.2.9].)

4. Analogue to Bernoulli polynomials

The higher-order Bernoulli polynomials B(p)
n (x) are defined by(

z

ez − 1

)p
ezx =

∞∑
n=0

B(p)
n (x)

zn

n!
.

When p = 1, B(1)
n (x) = Bn(x) and Bn(0) = Bn. Probabilistic interpretation

for Bn(x) can be found, e.g., [5, eq. 2.14]. Touchard [16, eq. 44] computed the
orthogonal polynomials with respect to Bernoulli numbers, denoted by Rn(y). More
specifically, R0(y) = 1, R1(y) = y + 1/2 and for n ≥ 1,

Rn+1(y) =

(
y +

1

2

)
Rn(y)− n4

4(2n+ 1)(2n− 1)
Rn−1(y).

Following similar steps, we shall obtain analogues of Theorem 1 and Theorem 3 for
Bernoulli polynomials. The proof is omitted.

Theorem 17. Let %n(y) be the orthogonal polynomials with respect to Bn(x), i.e.,
for integers r and n, with 0 ≤ r < n,

yr%n(y)|yk=Bk(x) = 0.

Then, %0(y) = 1, %1(y) = y − x+ 1/2 and for n ≥ 1,

(4.1) %n+1(y) =

(
y − x+

1

2

)
%n(y)− n4

4(2n+ 1)(2n− 1)
%n−1(y).

In particular,

%n(y) =
n!

(n+ 1)n
pn

(
y;

1

2
,

1

2
,

1

2
,

1

2

)
,

where pn(y; a, b, c, d) is the continuous Hahn polynomial [10, pp. 200–202]. More-
over, let Bn,k be the generalized Motzkin numbers with special choice σk = x− 1/2
and τk = −k4/(4(2k + 1)(2k − 1)). Then Bn,0 = Bn(x). The matrix
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RB :=



x− 1
2 − 1

12 0 0 · · · 0 · · ·
1 x− 1

2 − 4
15 0 · · · 0 · · ·

0 1 x− 1
2

. . . . . .
... · · ·

0 0 1
. . . − n4

4(2n+1)(2n−1) 0 · · ·
...

...
...

. . . x− 1
2 − (n+1)4

4(2n+1)(2n+3) · · ·

0 0 0
. . . 1

. . . . . .
...

...
... · · ·

...
. . . . . .


generate all Bn(x) through the power of its left upper block, as an analogue to
Theorem 14.

Remark. We also tried to consider the analogue on B(p)
n (x). However, the rational

coefficients n4/(4(2n+ 1)(2n− 1)) provides more difficulties than n2 that appears
in (1.5). Moreover, the convolution property (2.8) for Meixner-Pollaczek polyno-
mials fails for continuous Hahn polynomials. Therefore, we only have the following
computation and conjectures.

Let %(p)
n+1(y) be the monic orthogonal polynomial with respect to B(p)

n (x), and
assume the three-term recurrence is

%
(p)
n+1(y) =

(
y − a(p)

n

)
%(p)
n (y)− b(p)n %n−1(y).

To compute %(p)
n (y), one could use, e.g., [8, eq. 2.1.10], which does not give explicit

formulas for a(p)
n and b(p)n . However, for a(p)

n , Lemma 4 implies that

a(p)
n = x− p/2.

The first several terms of b(p)n is given in the following table

p = 1 p = 2 p = 3 p = 4 p = 5

n = 1 1
12

1
6

1
4

1
3

5
12

n = 2 4
15

13
30

3
5

23
30

14
15

n = 3 81
140

372
455

1339
1260

2109
1610

1527
980

n = 4 64
63

3736
2821

138688
84357

668543
339549

171830
74823

n = 5 625
396

1245075
636988

299594775
127670972

42601023200
15509529057

3638564965
1154491404

Table 2. b(p)n for 1 ≤ n, p ≤ 5

Here, the first column is b(1)
n = n4/(4(2n+ 1)(2n− 1)), as that in the last term

of (4.1). Also, one can easily see that the first row is linear as b(p)1 = p/12, so is the
second row b

(p)
2 = (5p+ 3)/10. The following conjecture is due to Karl Dilcher.

Conjecture 18. The third row is given by

b
(p)
3 =

175p2 + 315p+ 158

140(2p+ 3)
;

the fourth row satisfies

b
(p)
4 =

6125p4 + 25725p3 + 41965p2 + 29547p+ 7230

21(5p+ 3)(175p2 + 315p+ 158)
;
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and the fifth row is
b
(p)
5 = 25(5p+3)(471625p6+3678675p5+12324235p4+22096305p3+22009540p2+

11549748p + 2519472)

/
(132(175p2 + 315p + 158)(6125p4 + 25725p3 + 41965p2 +

29547p+ 7230)).

Remark. We do not have a conjecture on the general formula for b(p)n .
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