THE THICKNESS OF K,,, AND K.,

XIA GUO AND YAN YANG

ABSTRACT. The thickness of a graph G is the minimum number of planar
subgraphs whose union is G. In this paper, we obtain the thickness of complete
3-partite graph K1, pn, K2 nn and complete 4-partite graph K 1 n.n-

1. INTRODUCTION

The thickness 6(G) of a graph G is the minimum number of planar subgraphs
whose union is G. It was first defined by W.T.Tutte [7] in 1963, then a few
authors obtained the thickness of hypercubes [5], complete graphs [1, 2, 8] and
complete bipartite graphs [3]. Naturally, people wonder about the thickness of
the complete multipartite graphs.

A complete k-partite graph is a graph whose vertex set can be partitioned into

k parts, such that every edge has its ends in different parts and every two vertices

in different parts are adjacent. Let K, ,, ., denote a complete k-partite graph

in which the ith part contains p; (1 < i < k) vertices. For the complete 3-partite
n

graph, Poranen proved 0(K, ,,) < [%] in [6], then Yang [10] gave a new upper

bound for §(K,, ), 1.6, O(Kpnn) < WTHW + 1 and obtained 0(K,,,,,) = WTHL
when n =3 (mod 6). And also Yang [9] gave the thickness number of K, (I <
m < n) when [ +m < 5 and showed that 0(Kj,) = [222] when [ + m is even
and n > $(I+m—2)% or l+misodd and n > (I4+m —2)(l+m —1).

In this paper, we obtain the thickness of complete 3-partite graph K ,,, and
K ., and we also deduce the thickness of complete 4-partite graph K i ,,, from
that of K, .

2. THE THICKNESS OF K,

In [3], Beineke, Harary and Moon gave the thickness of complete bipartite
graphs K, , for most value of m and n, and their theorem implies the following
result immediately.

Lemma 2.1. [3] The thickness of the complete bipartite graph K, ,, is

Q(Kn,n) = (n 1_ 2—"
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In [4], Chen and Yin gave a planar decomposition of the complete bipartite
graph Ky, 4, with p+1 planar subgraphs. Figure 1 shows their planar decomposi-
tion of Ky, 4p, in which {uy,...,us} = U and {vy,...,v4,} =V are the 2-partite
vertex sets of it. Based on their decomposition, we give a planar decomposition
of Ky, , with p+ 1 subgraphs when n =0 or 3 (mod 4) and prove the following
lemma.

p A
U {wai—3,u4i2} = UT
i=1 i

P
U {vai—2,va} = VJ
i=1,i#r

i=1,i#r

(a) The graph G, (1 <r <p)

Ul u Uqp—1 T Udp

V1 V2 V4p—1 {Vdp

(b) The graph G4

FIGURE 1. A planar decomposition of Ky, 4,

Lemma 2.2. The thickness of the complete 3-partite graph K, ., and Ky, , s

2
O n) = 0K = [,

whenn =0 or 3 (mod 4).
Proof. Let the vertex partition of Ky, , be (X,U,V), where X = {z, 25},
U={u,...,u,} and V = {vy, ..., v,}.

When n = 0(mod 4), let n =4p (p > 1). Let {G1,...,Gps1} be the planar
decomposition of K, , constructed by Chen and Yin in [4]. As shown in Figure
1, the graph G,y consists of n paths of length one. We put all the n paths in
a row, place vertex x; on one side of the row and the vertex x, on the other
side of the row, join both z; and xs to all vertices in Gp;q. Then we get a
planar graph, denote it by @pﬂ. It is easy to see that {Gy,...,G,, @pH} is a
planar decomposition of Ks,, ,. Therefore, we have §(Ks,,) < p+ 1. Since
Ky, C Kipn C Kap .y, combining it with Lemma 2.1, we have

p + 1= 9<Kn,n) S G(Kl,n,n) g 9(K2,n,n) S P + 17
that is, 0(K1 ,.n) = 0(Ka,n) = p+ 1 when n = 0(mod 4).
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When n = 3(mod 4), then n = 4p+3 (p > 0). When p = 0, from [9], we have
0(K133) = 0(K233) =2. When p > 1, since Ky, C K1 nn C Ko C Kopy1nt1,
according to Lemma 2.1 and 0(K3 4y 4,) = p + 1, we have

P +2= H(Kn,n) S Q(Kl,n,n) S 9<K2,n,n> S G(KQ,n+1,n+l) =Pp + 2.
Then, we get 0(K1 ) = 0(Kopnn) =p+ 2 when n = 3(mod 4).

Summarizing the above, the lemma is obtained. U

Lemma 2.3. There exists a planar decomposition of the complete 3-partite graph
Ky apioapt2 (p > 0) with p+ 1 subgraphs.

Proof. Suppose the vertex partition of the complete 3-partite graph K, , is
(X,U,V), where X = {2z}, U = {u1,...,u,} and V = {vy,...,v,}. When
n = 4p + 2, we will construct a planar decomposition of K 4p424p+2 With p +
1 planar subgraphs to complete the proof. Our construction is based on the
planar decomposition {Gy, Ga, ..., Gpi1} of Ky 4, given in [4], as shown in Figure
1 and the reader is referred to [4] for more details about this decomposition.

p p
For convenience, we denote the vertex set |J {wgi—3,usi—o}, U {wai—1,u4},
i=1itr i=Litr

p p

U {vsi—s,vai-1} and  |J {vai—2,v4} by U7, U3, Vi and V5 respectively. We
i=1,i%r i=1isr
also label some faces of G, (1 < r < p), as indicated in Figure 1, for example,
the face 1 is bounded by v4,_st4,v;u4r—1 in which v; is some vertex from V}".

In the following, for 1 < r < p+1, by adding vertices x, Usp11, Uap+2, Vapt1, Vap+2
and some edges to G, and deleting some edges from G, such edges will be added
to the graph G4, we will get a new planar graph G such that {Gl, e p+1} is
a planar decomposition of K7 419 4p+2. Because vy,—3 and vg,—q in G, (1 § r <p)
is joined by 2p — 2 edge-disjoint paths of length two that we call parallel paths,
we can change the order of these parallel paths without changing the planarity of
G,. For the same reason, we can do changes like this for parallel paths between
Ugr—1 and Ugp, Vg9 and vy, uge—3 and ug.—o. We call this change by parallel
paths modification for simplicity. All the subscripts of vertices are taken modulo
4p, except that of vapi1, Vapra, Uapr1 and ugyyo (the vertices we added to G..).

Case 1. When p is even and p > 2.
(a) The construction for G, , 1 <r <p,and r is odd.

Step 1: Place the vertex z in the face 1 of G,., delete edges vy,_3u4, and g v
from G,. Do parallel paths modification, such that w446 € U{, v441 € V}
and Ugp_3, Ugr_1, Ugr, Var—3, Var—2, Var—1 are incident with a common face which
the vertex x is in. Join x to Ugp—3, Ugpr—1, Ugyp, Vapr—_3, Ugpr—9, U4r—1 and Ugr+6, Vdr41-

Step 2: Do parallel paths modification, such that w11, U412 € Uj are incident
with a common face. Place the vertex vy, in the face, and join it to both w411
and U412

Step 3: Do parallel paths modification, such that wuy, .7, us+s € U] are incident
with a common face. Place the vertex vyp49 in the face, and join it to both w447
and g,y s.
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Step 4: Do parallel paths modification, such that v4, 10, V4412 € V5 are incident
with a common face. Place the vertex w4, in the face, and join it to both v119
and vgr412.

Step 5: Do parallel paths modification, such that vy, ,6,v4,18 € V5 are incident
with a common face. Place the vertex wusp;2 in the face, and join it to both v4, 46
and vg,4s.

(b) The construction for @r, 1 <r <p, and r is even.

Step 1: Place the vertex x in the face 3 of GG,., delete edges vy, t4,_3 and Uy, 3042
from G,. Do parallel paths modification, such that us47 € Uj, v444 € V5 and
Ugp—3, Udr—2, gy, Vir_2, Var_1, Vg are incident with a common face which the vertex
r is in. Join x to ugy_3, Usr—2, Udr, Var—2, Var—1, Var AN Ugri7, Vapis.

Step 2: Do parallel paths modifications, such that w15, Usr16 € U7, Ugri1, Ugri2 €
UL, Varss, Vars7 € VI, Vary1, Vargs € V) are incident with a common face, respec-
tively. Join vg,y1 to both wug,y5 and g, 46, join v,y to both g, and g9, join
Ugp+1 to both vy45 and vg,47, join ugyie to both vy and vy,43.

Table 1 shows how we add edges to G,(1 < r < p) in Case 1. The first
column lists the edges we added, the second and third column lists the subscript
of vertices, and we also indicate the vertex set which they belong to in brackets.

TABLE 1. The edges we add to G,(1 < r < p) in Case 1

subscript case
r is odd r is even
edge
TU; 4r — 3,4r — 1,4r dr+6 (U7) | 4r —3,4r — 2,47 | 4r + 7 (UY)
xv; dr —3,4r —2,4r —1 | 4r +1 (V7)) | 4r —2,4r — 1, 4r | 4r+4 (V7))
Vap41Uj 4r +11,4r + 12 (U3) 4r +5,4r + 6 (U])
V4pt2Uj dr +7,4r + 8 (UY) 4r +1,4r +2 (U7)
Udp+10j 4r +10,4r + 12 (V) dr +5,4r +7 (V)
Udp42V;j 4r +6,4r + 8 (V') dr +1,4r +3 (V)

(c) The construction for ép+1.
From the construction in (a) and (b), the subscript set of u; that zu; is an
edge in G, for some r € {1,...,p} is
{4r — 3,4r — 1, 4r,4r + 6(mod 4p) | 1 < r < p, and r is odd}
U{4r — 3,4r — 2,4r,4r + 7(mod 4p) | 1 <r < p, and r is even}
={1,...,p}.

The subscript set of u; that vy,,1u; is an edge in @T for some r € {1,...,p} is

{4r + 11,47 + 12(mod 4p) | 1 <r < p, and r is odd}

U{4r + 5,4r + 6(mod 4p) | 1 <r <p, and r is even}

={4r —3,4r —2,4r — 1,4r | 1 <r < p, and r is even}.

Using the same procedure, we can list all the edges incident with x, va,11, Vapto,
Ugpr1 and Ugpyo in ér (1 <r <p), so we can also list the edges that are incident
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with @, Vgpi1, Vaptr2, Usps1 D Ky 4p10 4542 Dut not in any @T (1 <r <p). Table
2 shows the edges that belong to Kj 45424542 but not to any G,, 1 <r < p, in
which the the fourth and fifth rows list the edges deleted form G, (1 <r <p) in

step one of (a) and (b), and the sixth row lists the edges of G,+1. The Gp1; is
the graph consists of the edges in Table 2, Figure 2 shows G, is a planar graph.

TABLE 2. The edges of @pﬂ in Case 1

edges subscript

TVAp41, TU4p41, Vap+1Uj, Udp 1V | J =41 —3,4r — 2,4r — 1,4r,4p+2. (r=1,3,...,p—1.)

TV4p 12, TULP+2, Vip+2Uj, Udp{2V; j=d4r—3,4r —2,4r — 1,4r,4p+ 1. (r=2,4,...,p.)
V4r—3U4r, UdrVir—1 r=13,...,p—1.
V4rUdr—3, Wdr—3V4r—2 r=2,4,...,p.
UjV; j=1,...,4p+2.

Vap+1 Uap+-2

FiGURE 2. The graph CAJI,H in Case 1

A planar decomposition {@1, . ,CAJPH} of K 4pt24p+2 is obtained as above
in this case. In Figure 3, we draw the planar decomposition of Kj i51s, it is
the smallest example for the Case 1. We denote vertex u; and v; by 7 and ¢’
respectively in this figure.

(a) The graph G, (b) The graph G,
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(¢c) The graph Gs (d) The graph Gy

17 18

’
14 13
147 413’

18

9’ \ 12/
94 12
17

¢) The graph G

FIGURE 3. A planar decomposition of Kj 15 1s

Case 2. When p is odd and p > 3. The process is similar to that in Case 1.
(a) The construction for @r, 1 <r <p, and r is odd.

Step 1: Place the vertex x in the face 1 of G,., delete edges vy, _3uy, and g V41
from G,., for 1 <r < p, and delete vou; from G, additionally.

For 1 < r < p, do parallel paths modification to G,, such that us.¢ € U7,
Vary1 € VY and ugp_3, Udr—1, Usr, Var—3, Var—2, Vgr—1 are incident with a common
face which the vertex z is in. Join x to w4._3, Ugr_1, Usr, Var—3, Var—2, Var—1 and
Ugr4-6, Var41-

Similarly, in Gy, join x to uy, us, us, v1, Ve, v3,v4 and ujg € U7, v5 € Vi, In G,
. . p
join = to Usp—3,Uap—1,Uap,Vap—3,Vap—2,Vap—1 and ug € U7 .

Step 2: For 1 < r < p, do parallel paths modification to G,, such that w111,

”
Ugry12 € Ug, Ugri7,Usrys € Uy, Vgrp10,Varp12 € V5 and vgri6, V448 € V3 are
incident with a common face, respectively. Join v4,1; to both wus,411 and ugy 412,
join vgpyo to both wg,7 and uy,4g, join g,y to both vy, 419 and vy,112, join wgyyo
to both v4, 16 and v4, 5.

Similarly, in G, join vap41 to us, ug € UT, join vapie t0 ur, ug € U, join Uyt
to vg, vs € V3, join ugpio to vs,vr € V.
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(b) The construction for G.,1<r <p,and r is even.

Step 1: Place the vertex x in the face 3 of GG,., delete edges vy, tt4,_3 and vy, 3042
fromG,, 1 <r<p-1.

Do parallel paths modification to G,,1 < r < p — 1, such that ug.,7 € UJ,
Varyq € Vo and Ugy—3, Ugr—2, Ugr, Var—2, Var—1, Vg are incident with a common face
which the vertex x is in. Join x to wg._3, Ugr_2, Usr, Var—2, Var—1, Vg and ugpiry,
Var+4- Similarly, in Gp_l, jOiIl T to Usp—7, Udp—6, Wap—a, Vip—6, Vip—5, Vap—a and Uy €
US ™ vap €V

Step 2: Do parallel paths modifications, such that w15, Usr16 € U7, Ugri1, Usri2 €
Ul Vgri5, Varr7 € V') Vary1, Varys € V] are incident with a common face, respec-
tively. Join vg,y1 to both us, 45 and s, 46, join v,y to both g, and g9, join
Ugp+1 to both vy45 and vg,47, join ugyie to both vy and vy,43.

Table 3 shows how we add edges to G,.(1 < r < p) in Case 2.

TABLE 3. The edges we add to G,(1 <r < p) in Case 2

subscript case
r is odd r is even
edge
T _ T
o, dr—3dr— 1 dr 4r+6,7‘7’5p£U1) Ar— 3, dr— 2. 47 dr+T,r#p 1E.U2)
2,7 =p (U]) 7,r=p—1(UJ)
TV 4r — 3,4r — 2,4r — 1 45m=1 dr — 2,4r — 1,4r dr+4 (V)
’ - r+1r#1,p (V) 7 ’
dr +11,4r + 12,7 # p (UT)
i 4 5,4 6 (UT
Vapt1ty 5,6,r = p (UT) Y
V4pt2U;j dr +7,4r + 8 (U}) dr +1,4r +2 (U7)
4r +10,4r + 12,7 # p (V)
wap 10 6.8 =p (V) rasart T )
4r +6,4r + 8,7 £ p (V)
wap 20 5.Tr=p (V) ot Larts )

(¢) The construction for Gp1.

With a similar argument to that in Case 1, we can list the edges that belong
to K Ap+2,4p+2 but not to any Gr, 1 < r < p, in this case, as shown in Table 4.
Then G »+1 1s the graph that consists of the edges in Table 4, Figure 4 shows Gp+1
is a planar graph.

Therefore, {G1,...,Gpy1} is a planar decomposition of K 4p494p4+2 in this
case.

Case 3. When p < 3.

When p = 0, K22 is a planar graph. When p = 1,2, 3, we give a planar de-
composition for K 66, K1 10,10 and K7 1414 with 2, 3 and 4 subgraphs respectively,
as shown in Figure 5, Figure 6 and Figure 7.
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TABLE 4. The edges of @p+1 in Case 2

edges subscript
TVAp+1, Vap+1Uj j=d4r—3,4r —2,4r — 1,4r,7,8,4p+ 2. (r =3,5,7,...,p.)
TULp 1, Udp+1Vj j=4r—3,4r —2,4r — 1,4r,5,7,4p+ 2. (r =3,5,7,...,p.)
TV4p 42, Vipt2Uyj j=4r —3,4r —2,4r — 1,4r,5,6,4p+ 1. (r =1,4,6,8...,p—1.)
TU4p 42, Udp2V; j=4r—3,4r —2,4r — 1,4r,6,8,4p+ 1. (r =1,4,6,8...,p—1.)
ULV2, Var—3Udr, Udr Var—1 r=13,...,p.
r=24,...,p—1.

VarUqr—3, U4r—30V4r—2

Ujvj

FIGURE 4. The graph G,, in Casc 2

L
N

FIGURE 5. A planar decomposition of K¢ ¢
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V1 V6 V10

V4 UL R U10 V9

uz v2 us U7 V11 U12)

v
3 uQ V5 uy 11 12

V14

FIGURE 7. A planar decomposition of K7 1414

Lemma follows from Cases 1, 2 and 3. O

Theorem 2.4. The thickness of the complete 3-partite graph K, 1S
n+ 2
9(K17n7n) - ’7 4 —|

Proof. When n = 4p, 4p + 3, the theorem follows from Lemma 2.2.

When n = 4p+1,n = 4p+2, from Lemma 2.3, we have 0( K7 4p424p+2) < p+1.
Since 9(K4p74p) =p+1 and K4p’4p C K1’4p+174p+1 C K174p+274p+2, we obtain

p+1 < O(Kiapr1apt1) < O(K1aproapre) < p+ 1.

Therefore, (K1 4p1.4p+1) = O(K1apraapia) = p + 1.

Summarizing the above, the theorem is obtained. 0

3. THE THICKNESS OF Kj,,

Lemma 3.1. There exists a planar decomposition of the complete 3-partite graph
Ko 4pt1.4p+1 (p > 0) with p+ 1 subgraphs.

Proof. Let (X,U,V) be the vertex partition of the complete 3-partite graph
K, in which X = {x1, 20}, U = {uq,...,u,} and V = {v1,...,v,}. When
n = 4p + 1, we will construct a planar decomposition of Kj 4,41 4p41 With p +1
planar subgraphs.

The construction is analogous to that in Lemma 2.3. Let {G4, Ga,...,Gpi1}
be a planar decomposition of Ky, 4, given in [4]. In the following, for 1 < r <
p + 1, by adding vertices 1, Z2, Uspt1, Vap1 to G, deleting some edges from G,
and adding some edges to G,, we will get a new planar graph @r such that
{@1, e CAJPH} is a planar decomposition of Ks4p414p+1. All the subscripts of

vertices are taken modulo 4p, except that of wgpi; and vy,4q (the vertices we
added to G,).

Case 1. When p is even and p > 2.
(a) The construction for G, , 1 <r < p.
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Step 1: When 7 is odd, place the vertex x,72 and 4,41 in the face 1,2 and 5 of
G, respectively. Delete edges v4, 3ty and uy,_1v4r_o from G,.

When r is even, place the vertex z1,75 and uypy4 in the face 3,4 and 5 of G,
respectively. Delete edge vy, t4,_3 and uy,_ov4,_1 from G,.

Step 2: Do parallel paths modifications, then join 1, 2, U411 and vgy41 to some
u; and v;, as shown in Table 5.

TABLE 5. The edges we add to G,.(1 < r < p) in Case 1

subscript case
r is odd r is even
edge
z1Uj 4r — 1,4r 4r+5 (UT) | 4r —3,4r —2 | 4r+8 (U3)
1V 4r —3,4r —1 | 4r+1 (V) 4r — 2,4r 4r +4 (V9)
Tauj 4r —1,4r 4r+3 (UT) | 4r —3,4r —2 | 4r+2 (U7)
T2vj 4r — 2,4r dr+7 (V) | 4r —3,4r —1 | 4r+6 (V)
Ugp+175 4r — 2,4r — 1
Vip 41U 4r +4,4r + 8 (U3) 4r —11,4r — 7 (UY)

(b) The construction for @pﬂ.

We list the edges that belong to K3 4p+1.4p+1 but not to any @r, 1<r<p,as
shown in Table 6. Then G4, is the graph that consists of the edges in Table 6,
Figure 8 shows G is a planar graph.

TABLE 6. The edges of é\p_l,_l in Case 1

edges subscript
:L'l’le .
j=4r—24r+3,4p+1. (r=13,...,p—1.)
105
T2 :
j=4r =T 4r,dp+ 1. (r =2,4,...,p.)
T2vj
Ugp+10; j=4r—3,4r. (r=1,2,...,p.)
Vapr1Uj j=4r—2,4r—1. (r=1,2,...,p.)
Vdr—3Udr, Var—2Udr—1 r=13,...,p— L
Udr—3V4r, Udr—2V4r—1 r=24,...,p.
Ui, j=1,...,4p+ 1.
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'U4;i+1 IL
u ( y Udp—2 u4p3 U4 U1
E:] Udpt1
FIGURE 8. The graph G,y in Case 1
Therefore, {G1,...,Gp41} is a planar decomposition of K5 4p414p+1 in this

9 p
case. In Figure 9, we draw the planar decomposition of K5 1717 it is the smallest

example for the Case 1. We denote vertex u; and v; by ¢ and i’ respectively in
this figure.
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) The graph G5

FIGURE 9. A planar decomposition of K 1717

Case 2. When p is odd and p > 3.
(a) The construction for CAJ,« ,1<r<np.

13

Step 1: When 7 is odd, place the vertex x,72 and 4,41 in the face 1,2 and 5 of
G, respectively. Delete edges v4, 3ty and ug,_1v4r_o from G,.

When r is even, place the vertex x,72 and w4y in the face 3,4 and 5 of G,
respectively. Delete edge vy 4,3 and ug,. _ov4._1 from G,.

Step 2: Do parallel paths modifications, then join 1, 2, U411 and vgy41 to some
u; and v;, as shown in Table 7.

TABLE 7. The edges we add to G,(1 <r < p) in Case 2

subscript case
r is odd r is even
edge
4 r 4 —1 T
T1Uj 4r — 1,4r 7’+577"7£p§U1) dr —3,4r — 2 r+8,r#p SUQ)
Lr=p () 8,r=p—1(Uy)
x1v;5 dr —3,4r—1 | 4r+ 1,7 #p (V)) 4r —2,4r dr +4 (V3)
4r + 3,7 #p (UF)
i 4r — 1,4 N 4r — 3,4r — 2 4 2 (UT
. TR | se=pwp |[MTOY T
4 7 v 4 6 -1 (Vv
T2V 4r — 2,4r T ,T;ﬁps i) dr —3,4r — 1 r+6,7#p (72)
3,r=p (V) 6,r=p—1(V])
Udp+1V5 dr —2,4r — 1
dr+4,4r + 8,7 £ p (U3) .
j dr —11,4r — 7 (U!
et 4,r=p (U]) r r=TUh

(b) The construction for @pﬂ.

We list the edges that belong to K3 4,41,4p+1 but not to any CA}T, 1<r<p,as
shown in Table 8. Then (44 is the graph that consists of the edges in Table 8,
Figure 10 shows G4 is a planar graph.
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TABLE 8. The edges of @p+1 in Case 2

edges subscript
T1Uj j=2,4r+3,4r+6,4p+1. (r=1,3,...,p—2.)
104 j=2,4,4r+3,4r+6,4p+1. (r=1,3,...,p—2.)
Tau; i=1,2,94r4r+1,4p+1. (r=4,...,p—1.)
T2v; i=1,8,94r4r+1,4p+1. (r=4,...,p—1.)
Udp+1V5 j=4r—=3,4r.(r=1,2,...,p.)
V4p+1Uj j=4r—2,4r —1,4p—7.(r=1,2,...,p.)
Vir—3U4r, Vir—2U4r—1 r=13,...,p.
Udr—3V4r, Udr—2V4r—1 r=24,...,p—-1
U;v; j=1,...,4p+ 1.

u2 Q%\ Z;%\g U1 Uq
V3 2’4;,\7 V4
FIGURE 10. The graph Gp;; in Case 2
Therefore, {G1,...,Gpi1} is a planar decomposition of Ks4p+14p+1 in this

case.

Case 3. When p < 3.

When p = 0, Ky, is a planar graph. When p = 1,2,3, we give a planar
decomposition for Ks 55, K299 and K 1313 with 2, 3 and 4 subgraphs respectively,
as shown in Figure 11, Figure 12 and Figure 13.

X

2 us v3

v

T2

[ ]

u

ug L1 2 b
b2

) us V4

FIGURE 11. A planar decomposition K5 5
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13

2R )
Ul V4 U8 UG 10

T2 ¢T1
U2 U3 Uus U7, V11

U U3 u11

u13

FIGURE 13. A planar decomposition of K5 1313

Summarizing Cases 1,2 and 3, the lemma follows. O

Theorem 3.2. The thickness of the complete 3-partite graph Ko, , 1S
n+ 3
9(K2,n,n) - ’— 4 -I
Proof. When n = 4p,4p + 3, from Lemma 2.2, the theorem holds.
When n = 4p + 1, from Lemma 3.1, we have 0(K34p41.4p+1) < p + 1. Since
9(K4p74p) =p+ 1 and K4p74p C K274p+174p+1, we have
p+1=0(Kpap) < O0(Kospi1apt1) < p+1.
Therefore, 0(Ks ap+1.4p41) =p + 1.

When n = 4p + 2, since Kypi34pr3 C Ko api2.4pt2, from Lemma 2.1, we have
p+2 = 0(Kypisaprs) < 0(Koapi24pt2). On the other hand, it is easy to see
0(Kaapraapr2) < O(Koapiiapi1) +1=p+2, s0 we have (K ap124p12) = p + 2.

Summarizing the above, the theorem is obtained. 0

4. THE THICKNESS OF K 1,,
Theorem 4.1. The thickness of the complete 4-partite graph K i, , is

n+3
O(Kiann) = [~
Proof. When n = 4p 4+ 1, we can get a planar decomposition for K 1 4p11.4p+1
from that of K5 4p414pt1 as follows.

(1) When p = 0, K111, is a planar graph, 6(K;11) = 1. When p = 1,2
and 3, we join the vertex x; to xy in the last planar subgraph in the planar
decomposition for Ks55, K299 and K313 which was shown in Figure 11, 12
and 13. Then we get the planar decomposition for K1 155, K1199 and K 11313
with 2, 3 and 4 planar subgraphs respectively.

(2) When p > 4, we join the vertex x; to xs in (AJPH in the planar decompo-
sition for K 4p+14p+1 Which was constructed in Lemma 3.1. The G4 is shown
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in Figure 8 or 10 according to p is even or odd. Because x; and z, lie on the
boundary of the same face, we will get a planar graph by adding edge zix5 to
@pH. Then a planar decomposition for K7 1 4p+1,4p+1 With p+4 1 planar subgraphs
can be obtained.

Summarizing (1) and (2), we have Kj 1 4pt1,4p+1 < p+ 1.

On the other hand, from Lemma 2.1, we have 6(Kyp114p+1) = p + 1. Due to
Kipi1apt1 C Kigapap C Ki1ap1,apt1, We get p+1 < 0(Ky1ap.ap) < (K1 1,ap11,4p41)-
So we have

O(K11,4p,4p) = 0(K11,4p11,p11) =P+ 1.

When n = 4p + 3, from Theorem 3.2 , we have 0(Ks4pi24p12) = P + 2.
Since Kjapioapr2 C Kiiaprodpre C Kiiapsaprs C Ki1ap+1)4p+1), and the
ideas from the previous case establish, we have p + 2 < (K1 4pt24pr2) <
O(K 11 4p+3,4p+3) < (K11 4(p+1)4p+1)) = P + 2, which shows

O(K11ap2.4p+2) = O(K114p13pr3) =D+ 2.

Summarizing the above, the theorem follows. OJ
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