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Abstract. This paper is concerned with the inverse problem for non-selfadjoint
Sturm-Liouville operator with discontinuity conditions inside a finite interval.

Firstly, we give the definitions of generalized weight numbers for this operator

which may have the multiple spectrum, and then investigate the connection-
s between the generalized weight numbers and other spectral characteristics.

Secondly, we obtain the generalized spectral data, which consists of the gen-

eralized weight numbers and the spectrum. Then the operator is determined
uniquely by the method of spectral mappings. Finally, we give an algorithm

for reconstructing the potential function and the coefficients of the boundary

conditions and the coefficients of the discontinuity conditions.

1. Introduction

In this paper, we consider the following non-selfadjoint boundary value problem
L = L (q (x) , h,H, β, γ, d) for the equation:

(1.1) `y := −y′′ + q (x) y = λy

on the interval 0 < x < π with the boundary conditions

(1.2) U (y) := y′ (0)− hy (0) = 0, V (y) := y′ (π) +Hy (π) = 0

and the discontinuity conditions

(1.3) y (d+ 0) = βy (d− 0) , y′ (d+ 0) = β−1y′ (d− 0) + γy (d− 0)

at d ∈ (0, π), where q(x) ∈ L2 [0, π] is a complex-valued function, h, H, γ are
complex numbers, and β ∈ R, β 6= 0.

There has been extensive study of inverse problems for Sturm-Liouville opera-
tor with discontinuity conditions inside a finite interval since the discontinuities are
connected with non-smooth material properties. The inverse problem for selfadjoint
Sturm-Liouville operator with different type discontinuity has been considered and
solved by different methods in [8, 9, 16, 18, 19, 22–26]. [17, 21] studied the in-
verse spectral problem for discontinuous Sturm-Liouville operators with boundary
conditions linearly dependent on the spectral parameter. The inverse problem for
non-selfadjoint Sturm-Liouville operator with discontinuity inside an interval has
been investigated in [12, 15] when the spectrum is simple.

Recently, many authors paid more attention on the inverse problem for the
non-selfadjoint operator with multiple spectrum (see [1, 4, 5, 10, 14, 20] and the
references therein). Especially, Buterin [5] considered the inverse problem for the
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boundary value problem (1.1), (1.2) with an arbitrary behaviour of the spectrum
and gave generalized weight numbers more naturally and proved that a multiple
spectrum and the generalized weight numbers determine the potential function and
boundary conditions uniquely. In this paper, we add the discontinuity conditions
(1.3) at d ∈ (0, π) to the boundary value problem (1.1), (1.2), and give the gen-
eralized weight numbers for discontinuous non-selfadjoint Sturm-Liouville operator
with multiple spectrum, and recovering this operator from its spectral characteris-
tics by spectral mappings (see [27]).

This paper is organized as follows. In Section 2, some basic definitions and
useful properties are given. We devote Section 3 to give the useful definition of
generalized spectral data. The connections between the generalized spectral data
and other spectral characteristics are investigated in Section 4. In Section 5, by
the method of spectral mappings, we prove that the given generalized spectral data
uniquely determine the potential q and the coefficients h, H, β, γ, respectively, and
then give an algorithm for reconstructing the operator L (q (x) , h,H, β, γ, d).

2. Preliminaries

Let y (x), z (x) be continuously differentiable functions on [0, d] and [d, π]. Denote
〈y (x) , z (x)〉 := y (x) z′ (x)− y′ (x) z (x). If y (x) and z (x) satisfy the discontinuity
conditions (1.3), then

(2.1) 〈y (x) , z (x)〉x=d−0 = 〈y (x) , z (x)〉x=d+0 ,

Let ϕ (x, λ), ψ (x, λ) be solutions of equation (1.1) satisfying the discontinuity con-
ditions (1.3) and the initial conditions

(2.2) ϕ (0, λ) = ψ (π, λ) = 1, ϕ′ (0, λ) = h, ψ′ (π, λ) = −H,
respectively. Then U (ϕ) = V (ψ) = 0. Denote ∆ (λ) := 〈ϕ (x, λ) , ψ (x, λ)〉, then
∆ (λ) is independent of x. From (2.2), we obtain

(2.3) ∆ (λ) = −V (ϕ) = U (ψ) .

In the following, we give three powerful and important lemmas, the rigourous
proof of these lemmas which can be referred to [2, 3, 6, 11, 13, 25] and no proof
will be given here.

Lemma 1. The zeros of ∆ (λ) coincide with the eigenvalues λn, n ∈ N := {0, 1, 2, ..., n, ...}
of L. ϕ (x, λn) and ψ (x, λn) are corresponding eigenfunctions of L.

Proof. See [5, p.740] and [12, p.3]. �

Lemma 2. Let ρ =
√
λ, τ =Imρ. For |ρ| → ∞,

(2.4) ϕ (x, λ) =

 cos ρx+O
(

1
ρ exp (|τ |x)

)
, x < d,

(b1 cos ρx+ b2 cos ρ (2d− x)) +O
(

1
ρ exp (|τ |x)

)
, x > d,

(2.5) ϕ′ (x, λ) =

{
−ρ sin ρx+O (exp (|τ |x)) , x < d,
ρ (−b1 sin ρx+ b2 sin ρ (2d− x)) +O (exp (|τ |x)) , x > d,

(2.6)

ψ (x, λ) =

 b1 cos ρ (π − x)− b2 cos ρ (π + x− 2d) +O
(

1
ρ exp (|τ | (π − x))

)
, x < d,

cos ρ (π − x) +O
(

1
ρ exp (|τ | (π − x))

)
, x > d,
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(2.7)

ψ′ (x, λ) =

{
ρ (b1 sin ρ (π − x) + b2 sin ρ (π + x− 2d)) +O (exp (|τ | (π − x))) , x < d,
ρ sin ρ (π − x) +O (exp (|τ | (π − x))) , x > d,

∆ (λ) = ρ (b1 sin ρπ − b2 sin ρ (2d− π)) +O (exp (|τ |π)) ,

where b1 =
β + β−1

2
, b2 =

β − β−1

2
.

In particular, for j = 0, 1, we obtain

(2.8) ϕ(j) (x, λ) = O
(
|ρ|(j) exp (|τ |x)

)
,

(2.9) ψ(j) (x, λ) = O
(
|ρ|(j) exp (|τ | (π − x))

)
.

Proof. The proof is similar to the selfadjoint case, see [25, p.145-146]. �

Lemma 3. The roots λ1
n =

(
ρ1
n

)2
, n ∈ N of

∆1 (λ) := ρ (b1 sin ρπ − b2 sin ρ (2d− π))

are separated. For fixed δ and sufficiently large |λ|,

(2.10) ∆ (λ) > Cδ |ρ| exp (|τ |π) , λ ∈ Gδ,

where Gδ =
{
λ = ρ2 :

∣∣ρ− ρ1
n

∣∣ > δ}. By Rouché theorem, we have

ρn =
√
λn = ρ1

n +
θn
ρ1
n

+
κn
ρ1
n

,

so

∆ (λ) = $
(
λ− λ1

0

) ∞
Π
n=1

λn − λ
λ1
n

,

where $ = πb1 − (2d− π) b2, κn ∈ l2, and θn is a bounded sequence

θn =
(
a1 cos ρ1

nπ + a2 cos ρ1
n (2d− π)

)(
2
d

dλ
∆1
(
λ1
n

))−1

,

a1 = b1

(
h+H +

1

2

∫ π

0

q (t) dt

)
+
γ

2
,

a2 = b2

(
H − h+

1

2

∫ π

0

q (t) dt−
∫ d

0

q (t) dt

)
− γ

2
,

Proof. The proof can be refer to [25, p.146] and [2, Lemma 3]. �

3. The generalized spectral data

The algebraic multiplicity mn of the eigenvalue λn(n ∈ N) is the order of it as a
root of ∆ (λ) = 0, i.e. λn = λn+1 = · · · = λn+mn−1. In throughout the paper, we
use multiplicity instead of algebraic multiplicity for short. By the virtue of Lemma
3, for sufficient large n, mn = 1.
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Let S = {n|n = 1, 2, · · · , λn−1 6= λn} ∪ {0}, ϕη (x, λ) =
1

η!

dη

dλη
ϕ (x, λ), ψη (x, λ) =

1

η!

dη

dλη
ψ (x, λ). For η = 1, 2, · · · ,mn − 1, n ∈ S, we have

(3.1)


`ϕη (x, λn) = λnϕη (x, λn) + ϕη−1 (x, λn) ,
ϕη (d+ 0, λn) = βϕη (d− 0, λn) ,
ϕ′η (d+ 0, λn) = β−1ϕ′η (d− 0, λn) + γϕη (d− 0, λn) ,
ϕη (0, λn) = ϕ′η (0, λn) = 0,

(3.2)


`ψη (x, λn) = λnψη (x, λn) + ψη−1 (x, λn) ,
ψη (d+ 0, λn) = βψη (d− 0, λn) ,
ψ′η (d+ 0, λn) = β−1ψ′η (d− 0, λn) + γψη (d− 0, λn) ,
ψη (π, λn) = ψ′η (π, λn) = 0.

From (2.3), we infer that

1

η!
∆(η) (λn) = −V (ϕη (x, λn)) = U (ψη (x, λn)) = 0, n ∈ S, η = 0, 1, · · · ,mn − 1,

i.e., ϕη (x, λn) and ψη (x, λn), n ∈ S, η = 1, 2, · · · ,mn − 1, are generalized eigen-
functions of L. Let

(3.3)
ϕn+η (x) = ϕη (x, λn) , ψn+η (x) = ψη (x, λn) ,
∆η,n := 1

η!∆
(η) (λn) , n ∈ S, η = 0, 1, · · · ,mn − 1.

It is easy to see that {ϕn (x)}n∈N, {ψn (x)}n∈N are complete systems of eigenfunc-
tions and generalized eigenfunctions of L (refer to [13, Theorem 1.3.2]). Naturally,
we can define the generalized weight numbers αn, n ∈ N for L by the following
equations:

(3.4) αn+η =

∫ π

0

ϕn+η (x)ϕn+mn−1 (x) dx, n ∈ S, η = 0, 1, · · · ,mn − 1.

When the multiplicity mn = 1, the generalized weight numbers αn coincide with
the weight numbers for the selfadjoint Sturm-Liouville operator with discontinuity
conditions inside a finite interval (see [25, p.143 (10)]).

Definition 1. The numbers {λn, αn}n∈N are called the generalized spectral data of
L.

4. The Weyl function

Denote by S (x, λ), Φ (x, λ) the solutions of equation (1.1) under the conditions

S′ (0, λ) = U (Φ) = 1, S (0, λ) = V (Φ) = 0,

and the discontinuity conditions (1.3). The functions Φ (x, λ) and M (λ) := Φ (0, λ)
are called the Weyl solution and the Weyl function for L, respectively. Evidently,

(4.1) Φ (x, λ) =
ψ (x, λ)

∆ (λ)
= S (x, λ) +M (λ)ϕ (x, λ) ,

(4.2) 〈ϕ (x, λ) ,Φ (x, λ)〉 ≡ 1,

(4.3) M (λ) =
∆0 (λ)

∆ (λ)
, ∆0 (λ) := ψ (0, λ) .
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The symbol ∆0 (λ) denotes the characteristic function of the boundary value prob-
lem consisting of the equation (1.1), the discontinuity conditions (1.3) and the
boundary conditions y (0) = V (y) = 0. The zeros of ∆0 (λ) are expressed in terms
of
{
λ0
n

}
n∈N, it is easy to show that {λn}n∈N ∩

{
λ0
n

}
n∈N = ∅. Then M (λ) is a

meromorphic function with zeros in λ0
n and poles in λn.

Next, we prove that the generalized spectral data determine the Weyl function
uniquely by the following theorem. This is a generalization of corresponding result
of non-selfadjoint Sturm-Liouville operator without discontinuities (see [5, p.741
(9)]).

Theorem 1. The Weyl function and the generalized spectral data of L satisfy the
following equalities:

(4.4) M (λ) =
∑
n∈S

mn−1∑
η=0

Mn+η

(λ− λn)
η+1 ,

(4.5)

η∑
k=0

αn+η−kMn+mn−k−1 = δη,0, n ∈ S, η = 0, 1, · · · ,mn − 1,

where δη,0 is Kronecker delta.

Proof. Firstly, considering the contour integral

IN (λ) =
1

2πi

∫
ΓN

M (µ)

λ− µ
dµ, λ ∈ int ΓN ,

where ΓN :=

{
λ : |λ| = R2

N , RN :=
∣∣ρ1
N

∣∣+ 1
2 inf
ρ1M 6=ρ1N

∣∣ρ1
M − ρ1

N

∣∣}, M , N ∈ N, is

assumed to be counterclockwise. By the virtue of Lemma 3, it yields ΓN ⊂ Gδ for
sufficiently small fixed δ > 0 and sufficiently large N . The formulae (2.9), (2.10),
(4.3) yield

|M (λ)| 6 C |ρ|−1
, λ ∈ Gδ

for sufficiently large |λ|. Hence lim
N→∞

IN (λ) = 0. By using the residue theorem (see

[6, V. §2.]) we calculate

IN (λ) = −M (λ) +
∑

n∈S,λn∈ int ΓN

Res
µ=λn

M (µ)

λ− µ
, λ ∈ intΓn\ {λn}n∈N .

Thus

(4.6) M (λ) =
∑
n∈S

Res
µ=λn

M (µ)

λ− µ
.

Set Res
µ=λn

M(µ)
λ−µ =:

mn−1∑
η=0

Mn+η

(λ−λn)η+1 , and in light of (4.6) we get (4.4).

Secondly, let us prove that coefficients Mn and the generalized weight numbers
αn determine each other uniquely by the formula (4.5). On account of (4.3) we
have M (λ) ∆ (λ) = ψ (0, λ), together with the identity (4.4) we find

(4.7)

(∑
n∈S

mn−1∑
η=0

Mn+η

(λ− λn)
η+1

)
∆ (λ) = ψ (0, λ) .
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Since λn, n ∈ S, are the zeros of ∆ (λ) with the multiplicity mn, the Taylor series

of ∆ (λ) at λn, n ∈ S, is
∞∑

p=mn

∆p,n (λ− λn)
p
. If we plug it back to (4.7) and let λ

approaches λn, then ψn (0) = Mn+mn−1∆mn,n. The proof of

(4.8) ψn+η (0) =

η∑
k=0

Mn+mn−k−1∆mn+η−k,n, n ∈ S, η = 0, 1, · · · ,mn − 1

follows in a similar manner. From (4.1), we get ψn (x) = ψn (0)ϕn (x), n ∈ S.
Owing to (3.1)-(3.3), an easy induction gives

(4.9) ψn+η (x) =

η∑
j=0

ψn+j (0)ϕn+η−j (x) , n ∈ S, η = 0, 1, · · · ,mn − 1.

Moreover, since ϕ (x, λ), ψ (x, µ) are solutions of equation (1.1) and satisfy the
discontinuity conditions (1.3), from (2.1) we know the function 〈y (x) , z (x)〉 is
continuous on x ∈ [0, π], hence

d

dx
〈ϕ (x, λ) , ψ (x, µ)〉 = (λ− µ)ϕ (x, λ)ψ (x, µ) .

By the initial conditions (2.2) and equality (2.3), we obtain

∆ (λ)−∆ (µ)

λ− µ
=

∫ π

0

ϕ (x, λ)ψ (x, µ) dx.

Hence d
dλ∆ (λ) =

π∫
0

ϕ (x, λ)ψ (x, λ) dx. A simple manipulation leads to the solution

that

∆mn+η,n =
1

mn + η

mn+η−1∑
j=0

∫ π

0

ϕmn+η−1−j (x, λn)ψj (x, λn) dx, η > 0.

Using (3.1), (3.2) and integrating by parts we get

(4.10) ∆mn+η,n =

∫ π

0

ϕn+mn−1 (x)ψn+η (x) dx, n ∈ S, η = 0, 1, · · · ,mn − 1.

By substituting (4.9) in (4.10) and taking the definition of generalized weight num-
bers αn (3.4) into account, we obtain

(4.11) ∆mn+η,n =

η∑
j=0

αn+η−jψn+j (x) .

Combining (4.11) and (4.8) we conclude that

η∑
j=0

ψn+η−j (0)

j∑
k=0

αn+j−kMn+mn−k−1 = ψn+η (0) .

Since ψn (0) 6= 0, n ∈ S, continuing by induction we finally obtain the relation
(4.5). �
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5. The inverse problem

Inverse Problem 1. Recovering the operator L from one of the following condi-
tions: (i) the generalized spectral data {λn, αn}n∈N; (ii) the two spectra {λn}n∈N,{
λ0
n

}
n∈N; (iii) the Weyl function M (λ).

Remark 1. According to Lemma 3, we know the spectrum {λn}n∈N uniquely de-
termines the characteristic function ∆ (λ). Similarly, the characteristic function
∆0 (λ) is uniquely determined by its zeros

{
λ0
n

}
n∈N. Combining (4.3), (4.4) and

(4.5), we see that the statements (i)-(iii) of Inverse Problems 1 are equivalent. The
numbers {λn,Mn}n∈N can also be used as spectral data.

5.1. The uniqueness theorem. Before giving the uniqueness theorem, we intro-
duce some symbols initially. We agree that L, L̃ denote the operators of the same
form but with different coefficients q̃ (x), h̃, H̃, β̃, γ̃, d̃. That is to say if a certain

symbol ξ represents an object related to L, then ξ̃ will denote the analogous object

related to L̃, and ξ̂ := ξ − ξ̃.

Theorem 2. (The uniqueness theorem) If λn = λ̃n, αn = α̃n, n ∈ N, then L = L̃,

i.e. q (x) = q̃ (x) a.e. on (0, π), h = h̃, H = H̃, β = β̃, γ = γ̃ and d = d̃.

Proof. Because of Theorem 1, we know the generalized spectral data {λn, αn}n∈N
uniquely determines the Weyl function M (λ). It suffices to prove that if M (λ) =

M̃ (λ), then L = L̃. It follows from (2.9), (2.10) and (4.1) that

(5.1)
∣∣∣Φ(j) (x, λ)

∣∣∣ 6 Cδ |ρ|j−1
exp (− |τ |x) , j = 0, 1, λ ∈ Gδ.

Define the matrix P (x, λ) = [Pjk (x, λ)]j,k=1.2 by the following formula

P (x, λ)

[
ϕ̃ (x, λ) Φ̃ (x, λ)

ϕ̃′ (x, λ) Φ̃′ (x, λ)

]
=

[
ϕ (x, λ) Φ (x, λ)
ϕ′ (x, λ) Φ′ (x, λ)

]
,

i.e.,

(5.2)

{
ϕ (x, λ) = P11 (x, λ) ϕ̃ (x, λ) + P12 (x, λ) ϕ̃′ (x, λ) ,

Φ (x, λ) = P11 (x, λ) Φ̃ (x, λ) + P12 (x, λ) Φ̃′ (x, λ) .

Formula (4.2) yields

(5.3)

{
Pj,1 (x, λ) = ϕ(j−1) (x, λ) Φ̃′ (x, λ)− Φ(j−1) (x, λ) ϕ̃′ (x, λ) ,

Pj,2 (x, λ) = Φ(j−1) (x, λ) ϕ̃ (x, λ)− ϕ(j−1) (x, λ) Φ̃ (x, λ) .

Combining (4.1) and (5.3) we see that

P11 (x, λ) = ϕ (x, λ) S̃′ (x, λ)−S (x, λ) ϕ̃′ (x, λ)+
(
M̃ (λ)−M (λ)

)
ϕ (x, λ) ϕ̃′ (x, λ) ,

P12 (x, λ) = S (x, λ) ϕ̃ (x, λ)− ϕ (x, λ) S̃ (x, λ) +
(
M (λ)− M̃ (λ)

)
ϕ (x, λ) ϕ̃ (x, λ) .

Owing to (4.1) and (5.3), for each fixed x, the functions Pjk (x, λ) are meromorphic

functions in λ. Put G0
δ = Gδ ∩ G̃δ. According to (2.8), (5.1) and (5.3), we obtain

(5.4) |P12 (x, λ)| 6 Cδ |ρ|−1
, |P11 (x, λ)| 6 Cδ, λ ∈ G0

δ .

By (4.1) and (5.3), we see that if M (λ) ≡ M̃ (λ), then for each fixed x, the functions
P1k (x, λ) are entire in λ. Combining with (5.4), we derive P11 (x, λ) ≡ C (x),
P12 (x, λ) ≡ 0. Taking (5.2) into consideration, we get

(5.5) ϕ (x, λ) ≡ C (x) ϕ̃ (x, λ)
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for all x and λ. Together with (2.4), we see that for |ρ| → ∞, arg ρ ∈ [ε, π − ε],
ε > 0,

ϕ (x, λ) =
b

2
exp (−iρx)

(
1 +O

(
1

ρ

))
,

where b = 1 for x < d, and b = b1 for x > d. Combining (4.2) and (5.5) this

yields b1 = b̃1, C (x) ≡ 1, i.e. ϕ (x, λ) ≡ ϕ̃ (x, λ) for all x and λ and consequently

L = L̃. �

5.2. Solution of the inverse problem. Without loss of generality, we consider
the inverse problem of recovering L from the generalized spectral data {λn, αn}n∈N.

Like [25, p.153 (60)], choose an arbitrary model boundary value problem L̃ =

L̃
(
q̃ (x) , h̃, H̃, β̃, γ̃, d̃

)
such that

(5.6) d = d̃,

( ∞∑
n=0

(ςn |ρn|)2

)1/2

<∞,
∞∑
n=0

ςn <∞,

where ςn := |ρn − ρ̃n| + |αn − α̃n|. Set λn,0 := λn, λn,1 := λ̃n, Mn,0 := Mn,

Mn,1 := M̃n, ϕn,i (x) := ϕ (x, λn,i), ϕ̃n,i (x) := ϕ̃ (x, λn,i), S0 := S, S1 := S̃,
mn,0 := mn, mn,1 := m̃n,

D (x, λ, µ) :=
〈ϕ (x, λ) , ϕ (x, µ)〉

λ− µ
,Dη,ν (x, λ, µ) :=

1

η!ν!

∂η+ν

∂λη∂µν
D (x, λ, µ) .

For i, j = 0, 1, n ∈ Si, denote

An+η,i (x, λ) :=

mn,i−1∑
p=η

Mn+p,iD0,p−η (x, λ, λn,i) ,

Qn+η,i;k,j (x) :=
1

η!

∂η

∂λη
Ak,j (x, λ) |λ=λn,i ,

where k ∈ N, η = 0, 1, · · · ,mn,i − 1. Similarly, by replacing ϕ with ϕ̃ in the above

definitions we define D̃ (x, λ, µ), D̃η,ν (x, λ, µ), Ãn,i (x, λ), Q̃n,i;k,j (x), k ∈ N, i, j =
0, 1. Using the fact that 〈ϕ (x, λ) , ϕ (x, µ)〉 is continuous on x ∈ [0, π], D (x, λ, µ),

Dη,ν (x, λ, µ), An,i (x, λ), Qn,i;k,j (x), D̃ (x, λ, µ), D̃η,ν (x, λ, µ), Ãn,i (x, λ), Q̃n,i;k,j (x),
k ∈ N, i, j = 0, 1 are continuous functions of x ∈ [0, π].

By the same methods as in [25, p.153-156], using Lemma 2, Lemma 3, (2.1),
(3.4), (4.5) and Schwarz’s lemma [6, VI. §2.], we get the following estimates as
n, k ∈ N, i, j = 0, 1:

(5.7)



|ϕn,i (x)| 6 C, |ϕn,0 (x)− ϕn,1 (x)| 6 Cςn, |Qn,i;k,j (x)| 6 C

|ρ1n−ρ1k|+1
,

|Qn,i;k,0 (x)−Qn,i;k,1 (x)| 6 Cςk
|ρ1n−ρ1k|+1

,

|Qn,0;k,j (x)−Qn,1;k,j (x)| 6 Cςn
|ρ1n−ρ1k|+1

,

|Qn,0;k,0 (x)−Qn,1;k,0 (x)−Qn,0;k,1 (x) +Qn,1;k,1 (x)| 6 Cςnςk
|ρ1n−ρ1k|+1

,

The similar estimates are also valid for ϕ̃n,i (x), Q̃n,i;k,j (x).

Lemma 4. The following representations hold:
(5.8)

ϕ̃n,i (x) = ϕn,i (x)+

∞∑
k=0

(
Q̃n,i;k,0 (x)ϕk,0 (x)− Q̃n,i;k,1 (x)ϕk,1 (x)

)
, n ∈ N, i, j = 0, 1,



9

(5.9)

Q̃n,i;k,j (x)−Qn,i;k,j (x) =
∞∑
l=0

(
Q̃n,i;l,0 (x)Ql,0;k,j (x)−Qn,i;l,1 (x) Q̃l,1;k,j (x)

)
,

n, k ∈ N, i, j = 0, 1,

where the series converge absolutely and uniformly with respect to x ∈ [0, π].

Proof. From (5.6), we obtain d = d̃ and β = β̃, then by virtue of (2.4), it yields

(5.10)
∣∣∣ϕ(j) (x, λ)− ϕ̃(j) (x, λ)

∣∣∣ 6 C |ρ|j−1
exp (|τ |x) , j = 0, 1.

In the same way, we derive that

(5.11)
∣∣∣ψ(j) (x, λ)− ψ̃(j) (x, λ)

∣∣∣ 6 C |ρ|j−1
exp (|τ | (π − x)) , j = 0, 1.

Let G0
δ = Gδ ∩ G̃δ, using (2.6)-(2.7), (2.10), (4.1) and (5.11) we arrive at

(5.12)
∣∣∣Φ(j) (x, λ)− Φ̃(j) (x, λ)

∣∣∣ 6 Cδ |ρ|j−2
exp (− |τ |x) , j = 0, 1, λ ∈ G0

δ .

Further, combining (4.2) and (5.3), we see that
(5.13)

P11 (x, λ) = 1 + (ϕ (x, λ)− ϕ̃ (x, λ)) Φ′ (x, λ)−
(

Φ (x, λ)− Φ̃ (x, λ)
)
ϕ̃′ (x, λ) .

It follows from (2.8), (2.9), (5.1), (5.3), (5.10), (5.12) and (5.13) that

(5.14) |P11 (x, λ)− 1| 6 Cδ |ρ|−1
, |P12 (x, λ)| 6 Cδ |ρ|−1

, λ ∈ G0
δ .

Analogously, we have

(5.15) |P22 (x, λ)− 1| 6 Cδ |ρ|−1
, |P21 (x, λ)| 6 Cδ, λ ∈ G0

δ .

Let real numbers a, b be a < min Reλn,i, b > max |Imλn,i|, n ∈ N, i = 0, 1.
Consider closed contour ΥN := ∂ΩN (with counterclockwise circuit) in the λ-plane,
where ΩN :=

{
λ : a 6 Reλ 6 R2

N , |Imλ| 6 b
}

. By the standard method (see [7,
p.46-70]), using (4.1), (5.2)-(5.4), and Cauchy’s integral formula (see [6, IV. §5.]),
we obtain the identity

(5.16) ϕ̃ (x, λ) = ϕ (x, λ) +
1

2πi

∫
ΥN

M̂ (µ) D̃ (x, λ, µ)ϕ (x, µ) dµ+ εN (x, λ) ,

where

εN (x, λ) =
1

2πi

∫
ΥN

ϕ̃ (x, λ) (P11 (x, µ)− 1) + ϕ̃′ (x, λ)P12 (x, µ)

λ− µ
dµ.

Using (5.14) we acquire

lim
N→∞

∂η

∂λη
εN (x, λ) = 0, η > 0

uniformly respect to x ∈ [0, π] and λ on bounded sets. Similarly, we have the
relation
(5.17)

D̃ (x, λ, µ)−D (x, λ, µ) =
1

2πi

∫
ΥN

D̃ (x, λ, ξ) M̂ (ξ)D (x, ξ, µ) dξ + ε1
N (x, λ, µ) ,

where

lim
N→∞

∂η+j

∂λη∂µj
ε1
N (x, λ, µ) = 0, η, j > 0
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uniformly with respect to x ∈ [0, π] and λ, µ on bounded sets. Calculating the
integral in (5.16) by the residue theorem (see [6, V. §2.]) we have, in light of (4.4),

1

2πi

∫
ΥN

M̂ (µ) D̃ (x, λ, µ)ϕ (x, µ) dµ =

N∑
k=0

(
Ãk,0 (x)ϕk,0 (x)− Ãk,1 (x)ϕk,1 (x)

)
for sufficiently large N . Passing to the limit in (5.16) as N →∞ we obtain

ϕ̃ (x, λ) = ϕ (x, λ) +

∞∑
k=0

(
Ãk,0 (x)ϕk,0 (x)− Ãk,1 (x)ϕk,1 (x)

)
.

Taking derivative to the both sides of this equation with respect to λ the cor-
responding number of times and substituting into λ = λn,i, we arrive at (5.8).
Analogously, using the same method on (5.17), it yields

D̃ (x, λ, µ)−D (x, λ, µ) =

1∑
p=0

(−1)
p
∑
l∈Sp

ml,p−1∑
η=0

Dη,0 (x, λl,p, µ) Ãl+η,p (x, λ) ,

and taking the definitions of Qn,i;k,j (x), Q̃n,i;k,j (x) into account we get (5.9). �

Note that there exists N ∈ N, such that for n > N , mn,0 = mn,1 = 1. Moreover,
an argument similar to the one used in [27, Lemma 1.3.4] shows that the infinite
series

∞∑
n=N+1

[Mn,0ϕ̃n,0 (x)ϕn,0 (x)−Mn,1ϕ̃n,1 (x)ϕn,1 (x)]

and
∞∑

n=N+1

d

dx
[Mn,0ϕ̃n,0 (x)ϕn,0 (x)−Mn,1ϕ̃n,1 (x)ϕn,1 (x)]

converge absolutely and uniformly on [0, d] and [d, π], respectively. Therefore,
l(x) := −2l′0(x) is square integrable on [0, π], where

l0 (x) :=
∑
n∈S0

mn,0−1∑
η=0

mn,0−1∑
p=η

Mn+p,0ϕ̃n+p−η,0 (x)ϕn+η,0 (x)

−
∑
n∈S1

mn,1−1∑
η=0

mn,1−1∑
p=η

Mn+p,1ϕ̃n+p−η,1 (x)ϕn+η,1 (x)

=
∑

n∈S0,n6N

mn,0−1∑
η=0

mn,0−1∑
p=η

Mn+p,0ϕ̃n+p−η,0 (x)ϕn+η,0 (x)

−
∑

n∈S1,n6N

mn,1−1∑
η=0

mn,1−1∑
p=η

Mn+p,1ϕ̃n+p−η,1 (x)ϕn+η,1 (x)

+
∞∑

n=N+1

[Mn,0ϕ̃n,0 (x)ϕn,0 (x)−Mn,1ϕ̃n,1 (x)ϕn,1 (x)] .

Lemma 5. The following relations hold

q (x) = q̃ (x) + l (x) ,

γ =
(
β−1 − β3

)
l0 (d− 0) + γ̃,

h = h̃− l0 (0) , H = H̃ + l0 (π) .

Proof. The rigourous proof of this lemma is similar to [27, Lemma 1.3.5], [25,
Lemma 5]. �
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Remark 2. For each fixed x ∈ [0, π] the relation (5.8) can be considered as a
system of linear equations with respect to ϕn,i (x), n ∈ N, i = 0, 1. But the series in
(5.8) converges only “with brackets”, i.e., the terms in them cannot be dissociated.
Therefore, it is inconvenient to use (5.8) as a main equation of the inverse problem.
Below we will transfer (5.8) to a linear equation in the Banach space of bounded
sequences.

Denote ω = {u|u = (n, i) , n ∈ N, i = 0, 1}. For each fixed x ∈ [0, π] we define
the vector

φ (x) = [φu (x)]u∈ω =

[
φn,0 (x)
φn,1 (x)

]
n∈N

by the formula

(5.18)

[
φn,0 (x)
φn,1 (x)

]
=

[
χn −χn
0 1

] [
ϕn,0 (x)
ϕn,1 (x)

]
,

χn =

{
ς−1
n , ςn 6= 0,

0, ςn = 0.

We also define a block-matrix

H (x) = [Hu;v (x)]u,v∈ω =

[
Hn,0;k,0 (x) Hn,0;k,1 (x)
Hn,1;k,0 (x) Hn,1;k,1 (x)

]
n,k∈N

, u = (n, i) , v = (k, j)

by the following formula[
Hn,0;k,0 (x) Hn,0;k,1 (x)
Hn,1;k,0 (x) Hn,1;k,1 (x)

]
=

[
χn −χn
0 1

] [
Qn,0;k,0 (x) Qn,0;k,1 (x)
Qn,1;k,0 (x) Qn,1;k,1 (x)

] [
ςk 1
0 1

]
.

Similarly we introduce φ̃n,i (x), φ̃ (x) and H̃n,i;k,j (x), H̃ (x) by replacing ϕn,i (x)

by ϕ̃n,i (x), and Qn,i;k,j (x) by Q̃n,i;k,j (x). Using (5.7) we get the estimates

(5.19)
|φn,i (x)| 6 C,

∣∣∣φ̃n,i (x)
∣∣∣ 6 C,

|Hn,i;k,j (x)| 6 Cςk
|ρ1n−ρ1k|+1

,
∣∣∣H̃n,i;k,j (x)

∣∣∣ 6 Cςk
|ρ1n−ρ1k|+1

.

Consider the Banach space B of bounded sequences a = [au]u∈ω with the norm
‖a‖B = supu∈ω |au|. It follows from (5.19) that for each fixed x ∈ [0, π] the opera-

tors I + H̃ (x) and I −H (x) (here I is the identity operator), acting from B to B,
are bounded, and

‖H (x)‖B→B 6 C sup

∞∑
k=0

ςk
|ρ1
n − ρ1

k|+ 1
<∞,

∥∥∥H̃ (x)
∥∥∥
B→B

6 C sup

∞∑
k=0

ςk
|ρ1
n − ρ1

k|+ 1
<∞.

Theorem 3. For each fixed x ∈ [0, π], the main equation

(5.20) φ̃ (x) =
(
I + H̃ (x)

)
φ (x)

for the vector φ (x) ∈ B is uniquely solvable in the Banach space B. Moreover, the

operator
(
I + H̃ (x)

)−1

is bounded in B.
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Proof. Rewriting (5.8) in the form[
ϕ̃n,0 (x)
ϕ̃n,1 (x)

]
=

[
ϕn,0 (x)
ϕn,1 (x)

]
+

∞∑
k=0

[
Q̃n,0;k,0 (x) −Q̃n,0;k,1 (x)

Q̃n,1;k,0 (x) −Q̃n,1;k,1 (x)

] [
ϕk,0 (x)
ϕk,1 (x)

]
, n ∈ N,

substituting here (5.18) and taking into account our notations of Qn,i;k,j (x) and

Q̃n,i;k,j (x) we arrive at

(5.21) φ̃n,i (x) = φn,i (x) +
∑
k,j

H̃n,i;k,j (x)φk,j (x) , (n, i) , (k, j) ∈ ω,

which is equivalent to (5.20) and the series in (5.21) converges absolutely and uni-

formly for x ∈ [0, π]. Similarly, by the definitions of Hn,i;k,j (x), H̃n,i;k,j (x), (5.9)
becomes

H̃n,i;k,j (x)−Hn,i;k,j (x) =
∑
l,p

H̃n,i;l,p (x)Hl,p;k,j (x) , (n, i) , (k, j) , (l, p) ∈ ω,

which is equivalent to (
I + H̃ (x)

)
(I −H (x)) = I.

Replacing L for L̃, one gets analogously

(I −H (x))
(
I + H̃ (x)

)
= I.

Hence the operator
(
I + H̃ (x)

)−1

exists, and it is bounded in B. �

Equation (5.20) is called the main equation of the inverse problem. Using the
solution of the main equation one can construct the function q, the coefficients β, γ
of the discontinuity conditions, and the coefficients h, H of the boundary conditions.
Thus, we obtain the following algorithm for solving the inverse problem.

Algorithm 1. Suppose the spectral data {λn, αn}n∈N be given. Then
(i) calculate Mn, n ∈ N, by solving the linear systems (4.5);

(ii) select L̃ = L̃
(
q̃ (x) , h̃, H̃, β̃, γ̃, d̃

)
satisfies (5.6) and calculate φ̃ (x) and

H̃ (x);
(iii) choose φ (x) by solving equation (5.20) and calculate ϕn,0 (x) via (5.18);
(iv) construct q, γ, h, H, β by Lemma 5.
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