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ABSTRACT. In this paper, we characterize disk-cyclic and codisk-cyclic weighted
pseudo-shifts on Banach sequence spaces, and consider the bilateral opera-
tor weighted shifts on £2(Z,K) as a special case. Moreover, we present a
counter-example to show that a result in [Y. X. Liang and Z. H. Zhou, Disk-
cyclicity and Codisk-cyclicity of certain shift operators, Operators and Matri-
ces, 9(2015), 831-846] is not correct.

1. INTRODUCTION

Let N denote the set of non-negative integers, Z denote the set of all integers.
Let L(X) be the space of all linear and continuous operators on a separable, infinite
dimensional complex Banach space X. An operator T € L(X) is said to be hyper-
cyclic if there is a vector € X such that the orbit Orb(T,z) = {T"z : n € N} is
dense in X. In such a case, x is called a hypercyclic vector for T.

The first example of a hypercyclic operator on a Banach space was offered in 1969
by Rolewicz [15], who showed that if B is the unilateral backward shift on ¢?(N),
then the scaled shift AB is hypercyclic if and only if || > 1. Salas [16] completely
characterized the hypercyclic unilateral weighted backward shifts on ¢?(N) with
1 < p < oo and the bilateral weighted shifts on ¢#(Z) with 1 < p < oo in terms of
their weight sequences. Leén-Saavedra and Montes-Rodriguez [12] later used Salas’
weight characterization to show that each type of weighted shifts is hypercyclic
precisely when it satisfies the so-called Hypercyclicity Criterion. This criterion
was obtained independently by Kitai [11] and by Gethner and Shapiro [4], and it
provides a sufficient condition for a general operator to be hypercyclic. Using the
Hypercyclicity Criterion, Grosse-Erdmann [5] extended Salas’ results by obtaining
a characterisation for hypercyclic weighted shifts on an arbitrary F-sequence space.
We refer the readers to the books by Bayart and Matheron [2], and by Grosse-
Erdmann and A. Peris Manguillot [6] for more background and many examples
about hypercyclic operators.

By Rolewicz’s example above, AB is not hypercyclic whenever [A| < 1, this led to
study the disk orbit or codisk orbit notion. Disk-cyclic and codisk-cyclic operators
were introduced by Zeana in her PhD thesis [8], and defined as follows:
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Definition 1.1. A bounded linear operator T on X is called disk-cyclic if there is
a vector z in X such that the set

{aT"z:a € C,0 < |a] <1,n € N} is dense in X.
In this case x is said to be a disk-cyclic vector for T.

Definition 1.2. A bounded linear operator 1" on X is called codisk-cyclic if there
is a vector x in X such that the set

{aT"z :a € C,|a| > 1,n € N} is dense in X.
In this case x is said to be a codisk-cyclic vector for T.

Remarks 1.3. (1) Every hypercyclic operator is (co)disk-cyclic;

(2) In [8], Zeana proved that the set of all disk-cyclic (respectively codisk-cyclic)
vectors for a disk-cyclic (respectively codisk-cyclic) operator on Hilbert space is a
dense G5 set. With the same arguments, this conclusion is also valid in Banach
spaces.

In [8] the author also proposed the disk-cyclicity criterion and codisk-cyclicity
criterion in Hilbert spaces. These two criteria play a key role in this paper, now
we extend them to Banach spaces and the proofs are the same as those in Hilbert
spaces.

Proposition 1.4. (Disk-Cyclicity Criterion) Let X be a separable Banach space,
T € L(X) such that
(1) There are dense sets Xo, Yy in X and a right inverse S of T' (not necessarily
bounded) such that S(Yy) C Yy and T'S = Iy,.
(2) There is a sequence (ny) C N such that
(a): klim |S™y|| = 0 for all y € Yo;
—00
(b): klim |77 || |S™y| =0 for all x € Xo,y € Y.
—00
Then T is disk-cyclic.

Proposition 1.5. (Codisk-Cyclicity Criterion) Let X be a separable Banach space,
T € L(X) such that
(1) There are dense sets Xo, Yy in X and a right inverse S of T (not necessarily
bounded) such that S(Yy) C Yo and T'S = Iy, .
(2) There is a sequence (ny) C N such that
(a): klirgo | T z|| =0 for all x € Xo;
(b): lim || T™ x| [|S™y| =0 for all z € Xo,y € Yp.
k—o0
Then T is codisk-cyclic.

For examples of disk-cyclic operators, Zeana [10] characterized the disk-cyclic bi-
lateral weighted shifts on ¢?(Z). Liang and Zhou studied the disk-cyclic and codisk-
cyclic tuples of the adjoint weighted composition operators on Hilbert spaces in
[14]. For more results about (co)disk-cyclic operators, we recommend papers [17],
[1] and [9]. In this paper, motivated by Grosse-Erdmann’s work [5], we investi-
gate the (co)disk-cyclicity of weighted pseudo-shifts on arbitrary Banach sequence
spaces.

To proceed further we recall some definitions of the sequence spaces and weighted
pseudo-shifts. For a comprehensive survey we recommend Grosse-Erdmann’s paper
[5].
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Definition 1.6. (Sequence Space) If we allow an arbitrary countably infinite
set I as an index set, then a sequence space over I is a subspace of the space
w(I) = C! of all scalar families (x;);cs. The space w(I) is endowed with its natural
product topology.

A topological sequence space X over I is a sequence space over I that is endowed
with a linear topology in such a way that the inclusion mapping X — w([l) is
continuous or, equivalently, that every coordinate functional f; : X — C, (z)ker —
x;(i € I) is continuous. A Banach (Hilbert) sequence space over I is a topological
sequence space over I that is a Banach (Hilbert) space.

Definition 1.7. (OP-basis) By (e;);cr we denote the canonical unit vectors e; =
(d;k)ker in a topological sequence space X over I. We say (e;)iecs is an OP — basis
or (Ovsepian Pelczynski basis) if span{e; : i € I} is a dense subspace of X and
the family of coordinate projections x — x;e;(i € I) on X is equicontinuous.
Note that in a Banach sequence space over I the family of coordinate projections
is equicontinuous if and only if sup,c; [|e;|||] fi|| < oo.

Definition 1.8. (Pseudo-shift Operators) Let X be a Banach sequence space
over I. Then a continuous linear operator T': X — X is called a weighted pseudo-
shift if there is a sequence (b;);e;r of non-zero scalars and an injective mapping
@ : I — I such that

T(x:)ier = (biTy(i))ier
for (z;) € X. We then write T'=T; ,, and (b;);cr is called the weight sequence.
Remarks 1.9. (1) If T = Ty, : X — X is a weighted pseudo-shift, then each
T™(n > 1) is also a weighted pseudo-shift as follows
T"(i)ier = (bn,ixw(z'))iel
where
@"(i) = (popo---op)(i) (n—fold)

n—1
bui = biby(iybgn-1() = [ by
v=0

(2) We consider the inverse ) = ¢! : ¢(I) — I of the mapping . We also set
by =0 and ey =0 ifiel\ (),
i.e. when (i) is “ undefined ”. Then for all i € I,
Topei = by eyy-

(3) We denote ¢™ =¢popo---o1) (n-fold), and we set byn(;) = 0 and eyn(;y =0
when ¢"(7) is “ undefined .

Definition 1.10. A sequence (¢, )nen of mappings ¢, : I — I is called a run-away
sequence if for each pair of finite subsets Iy C I and Jy C I there exists an ng € N
such that, for every n > ng, @, (Jo) N1y = 0.

We usually apply this definition to the sequence of iterates of the mapping ¢ :
I — I. Specifically, if we denote ™ := powo---0p (n-fold), we call ("), a
run-away sequence if for each pair of finite subsets Iy C I and Jy C I, there exists
an ng € N such that ™ (Jp) N Iy = 0 for every n > ng.
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The rest of the paper is organized as follows: Equivalent conditions for disk-cyclic
and codisk-cyclic pseudo-shifts on arbitrary Banach sequence spaces are given in
Section 2. In Section 3, we illustrate the result about disk-cyclic pseudo-shifts in
Section 2 with operator weighted shifts on ¢?(Z, K). As a consequence, we point out
a mistake in [13] by a simple counter-example. Motivated by Feldman’s work in [3],
we derive that the characterizations are far simplified when the operator weighted
shifts are invertible in Section 4.

2. Disk-cycCLIC AND CODISK-CYCLIC WEIGHTED PSEUDO-SHIFTS

In this section let X be a Banach sequence space over I in which (e;);er is an
OP-basis. We are concerned with the (co)disk-cyclicity of weighted pseudo-shifts
on X. For the characterization of hypercyclic weighted pseudo-shifts on X Grosse-
Erdmann established the following result in [5].

Theorem 2.1. [5, Theorem 5] Let T =Ty, : X — X be a weighted pseudo-shift.
Then the following assertions are equivalent:
(i) T is hypercyclic;
(ii) (o) The mapping ¢ : I — I has no periodic point;
(B) There exists an increasing sequence (ng) of positive integers such that,
for everyi € 1,

’I’kal -1
(H1) ( 11 bw(i)) egme(i)|| = 0,
v=0

n
(HQ) || <H blﬁ“@)) Cpmk (3) — 0,
v=1

as k — oo.

Remark 2.2. In paper [5], Theorem 2.1 holds for weighted pseudo-shifts on F-
sequence space.

The following theorem is our main result in this section.

Theorem 2.3. Let T =T, be a weighted pseudo-shift on X. If (™), is a run-
away sequence, then the following assertions are equivalent:

(1) T is disk-cyclic;

(2) There exists an increasing sequence (ny) of positive integers such that, for
every i, € I,

’I’ka]. -1
(a) lim <UH0 bwu)) €pms (5)

nE—1 -1 Nk
(b) lim ( bwm) €emk () (H bwv(i)) €y (i)
[e%s} v=0 v=1

(8) T satisfies the Disk-Cyclicity Criterion.

=0.

Proof. (1) = (2). Assume T is disk-cyclic. To prove (2), we need the following fact.

Fact For every finite subset Iy of I, any 0 < ¢ < 1 and N € N there erists
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an integer n > N such that

n—1 -1
(H bgpru(j)) eon(j)|| < & forall j € Iy, (2.1)
v=0

and

<eg, foralli,j€ I. (2.2)

n—1 -1 n
<H bw(j)) €en (5) H (H bwvu)) eyn (i)
v=0 v=1

Proof of the fact Let 0 < e <1, finite subset Iy C I and N € N be given. Since
(¢™) is a run-away sequence, there exists an ng € N such that for every m > ny,

™ (Io) N Iy = 0. (2.3)

By the equicontinuity of the coordinate projections in X, there is some § > 0 so
that for x = (z;)iec; € X

zses|| < % for all i € I, if ||z]| < 6. (2.4)

Since the set of disk-cyclic vectors for 7" is dense in X, there exist a disk-cyclic vector
x € X, a complex number o with 0 < |a| < 1 and n € N with n > max {N,ng}
such that

I*E €;

i€l

<6 and [[aT"x — Z ej|| < 6. (2.5)

Jj€lo

(Here we prove that the selection of n in the second inequality of (2.5) can be
arbitrarily large. Let A = {aT"z : @« € C,0 < |o| < 1,n € N}, B ={y : |ly —
> ejll <d}. Forevery pe N, let B, ={aT"z: a0 € C,0<|a| <1,neN,n<p}
j€lo

It is enough to show that B N (A \ B,) # 0. Since X is an infinite dimensional
Banach space, for every p € N, B\ B, is a non-empty open subset of X. It follows
that BN (A\ By) = (B\ B,) N A # (), because A is dense in X.)

By the continuous inclusion of X into w([), we can in addition obtain that

1
sup |z; — 1| < - and sup |ay; — 1| < =, (2.6)
i€l 2 j€lo 2
n—1
where T"z = (y;)jer = (( I bw(j)) %"(J‘))
V= je[
(2.4) and the first inequality in (2.5) imply that
||zses|| < % if i€ I\Io,
hence by (2.3) we have that
€ ,
’|$<pn(j)e<pn(j)|| < 5 for 5 € Iy. (27)

By the second inequality in (2.6),

n—1
o (H bw(j)) Ton(j) — 1

v=0

1
Si for j € Iy,
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which implies z n ;) # 0 and

1
n—1
a ( I bw(j)) Ten (j)

<2 (2.8)

for every j € Iy.
Now, by (2.7), (2.8) and |a| # 0 we have

n—1 -1
1
(O‘ H b@"’(]’)) Con(|| = n—1 [EXme|
v=0 « <

I1 bw(j)) Ton ()

v=0

IN

2[[zpnrepnipll <€ (2.9)
for all j € Iy. This implies condition (2.1) because 0 < |a| < 1.
As for (2.2), we deduce from (2.3) and the definition of ¢™ that

P (Io N™(I)) N Iy = 0. (2.10)
By (2.4), the second inequality in (2.5) implies that

n—1
o (H bw(j)) Ton(5)€)
v=0

So by (2.10) and the fact that eyn;y = 0 for all i € I\¢" (1),

<g if j € I\I;.

L 3
b v (q 7 n (g - f ) I . 211
a(l)lillw(l))xelp() <2 12 € lp ( )
By the first inequality in (2.6) we have
0<| |§2 for i € Iy. (2.12)
z;

Now, (2.11) and (2.12) imply that for each i € I
n 1 n
a (H bwv(i)) Eypn(i) Tzl |1 <H bwu)) Ti€yn (i)
v=1 v v=1
< e (2.13)
Thus from (2.9) and (2.13) we can deduce that

n—1 -1 n
<H bw(j)) on(5) | <H bw(i)) Eym (i)
v=0 v=1
n—1 -1
= (a 110, (j)) o (j)
v=0

< 52§5

for any ¢,j € Iy. Therefore (2.2) holds.
Coming back to the proof of (2). Since I is a countably infinite set, we fix I :=
{i1,42, *+ ,in, -} and set I := {iy,19, - ,ix} for each k € Nk > 1. Using the

el (H bw(z')) yn (i)
v=1
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above fact, we define inductively an increasing sequence (ny)x>1 of positive integers
by letting ny be a positive integer satisfying (2.1) and (2.2) for Iy = Iy, e = % and
N = nj_1, where we set N = 0 when k = 1. To prove (2) we only need to verify
that the sequence (ny)r>1 satisfies both (a) and (b). This is clear, since for any

fixed i,j € I there exists nj, € N such that ¢, j € I, for each k& > n{, which means

nk—l -1 1
( H bw“(i)) Eomk (5) || < % if k > ny,
v=0

and

nE—1 -1 ng
1 .
( II bw(j)) Epmi (j) H <H bwvu‘)) eyri(p)|| < k= mg.
v=0 v=1
So (a) and (b) hold.
(2) = (3). Suppose (2) holds. Set Xy = Yy = span{e;,i € I'} which are dense in
X and define a linear mapping: S : Yy — X by

S(ej) = b;leg,(j) for each j € I,
thus
n—1 -1
5"(ej) = (H bw(j)) eenj) (nENje).
v=0
Since
n
T'e; = <H bzp“(i)> €ypm (4) (n eNjie I),
v=1

we have T"S™(e;) = e; for each n € N, j € I. Let (ng) be the sequence given in
condition (2). By (a) and (b), it follows that for any i,j € T

li Mke || =
Jm {5 el =0,
and
lim [T i [[5™e;] = 0.
k—o0

By Proposition 1.4, T satisfies the Disk-Cyclicity Criterion.
(3) = (1). This implication follows from Proposition 1.4. O

Using a similar argument as in the proof of Theorem 2.3, we obtain equivalent
conditions for T to be codisk-cyclic.

Theorem 2.4. Let T =Ty, : X = X be a weighted pseudo-shift. If (¢™) is a
run-away sequence, then the following assertions are equivalent:

(1) T is codisk-cyclic;

(2) There exists an increasing sequence (ny) of positive integers such that, for
every i,j5 € I,

ng
li v (4 ng (4 = U;
(a) lim H (l}l by <z>) ey (i) || = 0;

nE—1 -1 N
1. v ¥ n y v(q n >
(®) Q%H(ﬂo by (J)) €pmk (j) H(u=1b¢ <z>> Cyi (i)
(8) T satisfies the Codisk-Cyclicity Criterion.

=0.
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3. DISK-CYCLIC OPERATOR WEIGHTED SHIFTS ON HILBERT SPACE ¢2(Z,K)

Bilateral operator weighted shifts on space ¢2(Z,K) were studied by Hazarika
and Arora in [7]. Here we prove that the bilateral operator weighted shifts are
special weighted pseudo-shifts. Before stating the main results of this section, we
settle some terminologies.

Let K be a separable complex Hilber space with an orthonormal basis {f;}72 .
Define a separable Hilbert space

C(Z,K) = {z=(..,x_1, [z, x1,...) t 2 € K and Y _ ||zi]|* < o0}
i€Z
under the inner product {(x,y) = > (s, ¥i)x
i€Z

Let {A,}2° _ . be a uniformly bounded sequence of invertible positive diagonal
operators on K. The bilateral forward and backward operator weighted shifts on
(?(Z,K) are defined as follows:

(i) The bilateral forward operator weighted shift 7" on ¢(Z, K) is defined by

T( <o L1, [1‘10}71‘13 . ) = ( ) A_QZI;_Q, [A—lx—l]a A0$07 . )

Since {A,}52

For n > 0,

n=—oo

is uniformly bounded, T is bounded and ||T|| = sup ||4;]| < 0.
i€Z

T"(..oyz_1, [zl w1, .) = (-, y—1, [Wol, Y1, -+ ),

where y; = H Ajps—nTj—n.
(#4) The bllateral backward operator weighted shift T on ¢2(Z, K) is defined by
T(...,xz_1,[xo],21,...) = (..., Agxo, [A121], A2xa, .. .).
Then
(. 2o [zol, 21, o) = (o y—1, ol ys - ),

where y; = H AjfsTjsn.
Since each An is an invertible diagonal operator on K, we conclude that

1 4nll = Sl;pllAnka and [|A71]] = SgpllAﬁlka-

Our main goal in this section is to prove the theorem stated below, which is a
special case of Theorem 2.3.

Theorem 3.1. Let T be a bilateral forward operator weighted shift on (?(Z, K) with
weight sequence { A, }52 _ ., where {A,} is a uniformly bounded sequence of positive
inwvertible diagonal operators on IC. Then the following statements are equivalent:
(1) T is disk-cyclic;
(2) There exists an increasing sequence (ny) of positive integers such that, for
every i1,i2 € N and j1,j2 € Z,

Ji—1
(a) hm H 11 A;lfilH =0;

OoU]lnk

- n 1
(b) klim H H Aglth H l_f A flz =
o v=j1—"ng s=j2

(8) T satisfies the Disk-Cyclicity Criterion.
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Proof. We start by proving that T is a weighted pseudo-shift on the Hilbert se-

quence space £*(Z, K). For any x = (x;);jez € (*(Z,K), since each x; is in K, there

exist scalars {z; ;}ien such that z; = >°7° @, ; fi. If we identify the tuple
(...,2_q, [300],1‘1’ .. ) = ( < (xi,(fl))ieNy [(%p)ieNL ($i,1)ieN, o)

with (2 ;)ien,jez, the space £2(Z,K) can be regarded as a Hilbert sequence space

over I :=N x Z.

For each (ig,jo) € I, we define e, j, := (..., 21, [20],21,...) € (*(Z,K), by
letting zj, = fi, and z; = 0 for j # jo. It is easy to see that (e;;)q jyer is an
OP-basis of (?(Z,K).

As by the hypothesis that {A, },ez is a uniformly bounded sequence of positive
invertible diagonal operators on I, there exist uniformly bounded positive sequences
{(@in)ien}nez, such that for each n € Z

A, fi =a;infi and A;lfi = a;}zfi for every 7 € N.
In this interpretation, T is the operator given by

T(ij)aper = Wigaper where yij = ai 1) -1)-
Hence T' is a weighted pseudo-shift T, , with
bij =aij—1 and (i, j) = (i,j —1) for (i,7) € I.

It follows from Theorem 2.3 that (1) and (3) are equivalent to the statement:
There exists an increasing sequence (ng) of positive integers such that, for every

(i1,51), (i, j2) € 1

nkfl -1 nkfl -1
leH;o ( ]:[0 b‘P“(th)) €omk (i1,41) - klggo (1:[0 b(il’jlv)> Clingi—nx)

nkfl -1
- klggo 1_[0(1(1'1’]'1*11*1) €(i1,51—nx)
o

= lim
k—o0
v

3

k

—

—1
a(il,jlv)> €(i1,51—nk)
1

= lim || J[ 4" | =0

k—o0

<
fary
—

v=j1—ng

and

nkfl -1 ng
e ( 11 bw’”(l’uﬁ)) Cm (i1,1) H (H bwvmm) €y (iz 72)
v=0 v=1

nkfl -1
= Jim | TT anvn ) eonn

ny
<H a(i27j2+v—1)> C€(iz,ja+nrk)
v=1

Jji—1 Jatni—1
. -1
=lim | [ A ||| I Asfn| =0
k—o0 . .
vV=71—Ng §=]2

which concludes the proof. ([l
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By Theorem 2.1 and the same proof as for Theorem 3.1 we get the following
result.

Theorem 3.2. Let T be a bilateral forward operator weighted shift on ¢?(Z,K) with
weight sequence { A, }52 _ ., where {A,} is a uniformly bounded sequence of positive
invertible diagonal operators on IC. Then the following statements are equivalent:
(1) T is hypercyclic;
(2) There exists an increasing sequence (ny) of positive integers such that, for
everyt € N and j € Z,

Jj—1 Jj+ng—1
. —lr|l — . 1l —
kl;r& H A fi 0 and kl;r& H Ay fi 0.
v=j—ng v=J
In [13], Liang and Zhou also provided a sufficient and necessary condition for
disk-cyclic forward bilateral operator weighted shifts on ¢2(Z, K).

Claim 1. [13, Theorem 2.2] Let T be a forward bilateral operator weighted shift
on ¢*(Z,K) with weight sequence {A,}5° ___, where {4,} is a uniformly bounded
sequence of positive invertible diagonal operators on K. Then the following state-
ments are equivalent:

(1) T is disk-cyclic;

(2) For all ¢ € N,

j—1
(a) linni}ioréfmax{Hk 1 Al ’

:jfn

7|]|§q =0,

Jj+n—1
(b) lim inf max T A

h—1
l}:[ As_1 » [ 1] SQ} =0;
(3) T satisfies the Disk-Cyclicity Criterion.

However, we discover that there is a gap in the proof of “(1) = (2)” in the above
claim: in paper [13], line 21 of page 836 does not imply line 23 of page 836, since
the selection of the integer n in line 21 depends on f;.

The following counter-example demonstrates that condition (2) of Claim 1 is not
necessary for disk-cyclicity.

Ezample 3.3. Let {4,}2 __ be the uniformly bounded sequence of positive in-
vertible diagonal operators on /C, defined as follows:

2fk, 0<k<mn,
if n>0:A4,(fr) =
3fk, k> n.

if n<0:A,(fx)=3fk, forallk>0.

Let T be the bilateral forward operator weighted shift on ¢?(Z,K) with weight
sequence {A,}22 _ . Then
(1) T is disk-cyclic;

(2) T is not hypercyclic;
(3) T does not satisfy condition (2) of Claim 1.
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Proof. To prove (1), we apply Theorem 3.1 with (ng) = (1,2,3,---). For any fixed
integers 41,42 € N and j1, jo € Z, by the definition of {A,}, we have

Jji—1 1
—1p
H A’u f’Ll g 2“71‘ . 3717“]'1‘7 (31)
v=j1—n
and
Jji—1 ja+n—1 1
—1r . = aljelHiz | gn—|j2|—i2
IT 45|l T Asfel| < grrgemp -3 2 . (32)
vV=J11—"Nn 5=]2

when n > [j1| + |ja| +i2 + 1.
It is obvious that condition (2) of Theorem 3.1 is satisfied, so T is disk-cyclic.
But for each integer n > 1 and any integers i € N, j € Z, we have

Jj+n—1

IT 4| =2
v=j

By Theorem 3.2, T' is not hypercyclic.
For the proof of (3), letting ¢ = 0 in (2) of Claim 1 we can obtain

j+n—1 h—1
o 1 .
hnrglgfmax H Ay H A, TR, 191 <0
k=j s=h—n
n—1 -1
- linrgi;f{ HAk. H At }
k=0 s=—n
A |
= hnrrilng = 1#£0,
which means that T does not satisfy condition (2) of Claim 1. O

Remark 3.4. We note that Theorem 2.2 in paper [13] was motivated by Theorem
3.1 in [7] by Hazarika and Arora. In paper [7] Theorem 3.1 and its proof contain
the same mistake as [13]. Theorem 3.2 is the correct version of it. Indeed, we have
the following counter-example: Let T be the bilateral forward operator weighted
shift on ¢2(Z, K) with weight sequence defined by

%fk 1fn2 k,
An(fr) =19 fr i —k<n<k,
ka lfTLS 7147,

Then T is hypercyclic by Theorem 3.2, but it does not satisfy condition (3.1) of
Theorem 3.1 in [7].

4. INVERTIBLE SHIFTS

In [3], Feldman showed that for bilateral weighted shifts on ¢2(Z) that are invert-
ible, the characterizing conditions for hypercyclicity simplify. It is clear that if T
is a bilateral operator weighted shift on ¢?(Z, K) with weight sequence {4, }5° ___,
then T is invertible if and only if there exists m > 0 such that ||A,!]| < m for
all n € Z. For such shifts, the characterizing conditions of Theorem 3.1 simplify.
Following Feldman [3] we notice that for this simplification it suffices to demand
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that there is some m > 0 such that ||A,;1|| < m for all n < 0 (or for all n > 0).
Thus we have the following.

Theorem 4.1. Let T be a bilateral forward operator weighted shift on (*(Z,K)
with weight sequence {Ap 52 _ o, where {An} is a uniformly bounded sequence of
positive invertible operators on K and there exists m > 0 such that || A, || < m for
alln < 0 (or for alln > 0). Then T is disk-cyclic if and only if there exists an
increasing sequence (ny) of positive integers such that, for every ii,is € N,

Nk
(a) lim HAith:O;
k—o0 v=1

ﬁ AZL fi, ﬁ Asfi|| = 0.
v=1 s=1

©) 5,

Proof. If T is disk-cyclic the result follows from Theorem 3.1. For the converse, it
is sufficient to show that for any € > 0, K € N with K > 1 and every N € N, there
exists an integer n > N such that for any |j1], |j2] < K and i1,i3 < K

Jji—1
IT 45t <= (4.1)
v=j1—"n
and
Jji—1 Jot+n—1
IT 4trlll T Al <= (4.2)
v=j1—n s=j2
To see this, we fix m; = 1 and for k = 2,3,4,--- let my be a number n satisfying

(4.1) and (4.2) for e = £, K = k and N = my_1. It is clear that the increasing
sequence (my),>1 satisfies condition (2) of Theorem 3.1, so that T is disk-cyclic.

We have to prove (4.1) and (4.2) under the assumption of (a) and (b). Firstly,
we assume ||A, || < m foralln < 0. Let e >0, K € N(K >1)and N € N be
given. Let (ng) be a sequence satisfying (a) and (b). Then we define a sequence ()
by letting ny := nj + K + 2 (this choice of nj guarantees that ny +j —1 > n; + 1
and ny — j > ny + 1 for all j with |j| < K). Then for any j € Z with |j| < K and
for all i € N we can deduce

J+ne—1 ng nr+j—1
IT Al <G| ITAA | TT A
s=j s=1 s=nr+1
Jj—1 0
where C; = || [T A7 if1<j<K,Cj=1ifj=1,C;= || ][] As||if —K <j < 1.
s=1 s=j
And
-1 n—j
IT 4as)| = | I A2
v=j—nyg v=1—j
ng ng—j
< GITAzA| | TT A=)
v=1 v=nr+1
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I A

v=1

0
where Cj = || [ AZ || if0 < j < K, Cj =1ifj=0,C} = if

v=1—j

—-K <j<Oo.
Since {A,}52
M for all n € Z.
By setting C7 := max{Cj : [j| < K}, O3 := max{C] : [j| < K}, C := max{M, m}
we can easily obtain that for all ¢ € N

is uniformly bounded, there exists M; > 1 such that ||A,|| <

JjH+ne—1 ng
1 Asr| <] Ashil| - for all |j] < K, (4.3)
s=j s=1
and
j—1 ng
[I Ac'f| <G| T AZLf||  forall || < K. (4.4)
v=j—ng v=1

Combining (4.3) and (4.4) we can get that for any |ji1|, |j2| < K and 41,i2 € N

Jji—1 ng
I Al < 2T A (4.5)
v=j1—ny v=1
and
ji—1 Jatng—1 ng ng
II 4 I Asfi| G0 T TT AT fi | [T ] Astin|| - (46)
v=j1—"np s=j2 v=1 s=1

By (a) and (b) we can find an integer n € {ny}r,n > N, such that (4.1) and
(4.2) hold for |j1],|j2| < K and i1,i9 < K.

The proof is similar when ||A,;'|| < m for all n > 0, in which case we just need
to let n, =ni, — K — 1. ]
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